\(VT=sin^2x.\dfrac{sinx}{cosx}+cos^2x.\dfrac{cosx}{sinx}+2sinx.cosx\)
\(=\dfrac{sin^4x+cos^4x+2sin^2x.cos^2x}{sinx.cosx}=\dfrac{\left(sin^2x+cos^2x\right)^2}{sinx.cosx}=\dfrac{1}{sinx.cosx}\)
\(=\dfrac{sin^2x+cos^2x}{sinx.cosx}=tanx+cota=VP\)
\(VT=sin^2x.\dfrac{sinx}{cosx}+cos^2x.\dfrac{cosx}{sinx}+2sinx.cosx\)
\(=\dfrac{sin^4x+cos^4x+2sin^2x.cos^2x}{sinx.cosx}=\dfrac{\left(sin^2x+cos^2x\right)^2}{sinx.cosx}=\dfrac{1}{sinx.cosx}\)
\(=\dfrac{sin^2x+cos^2x}{sinx.cosx}=tanx+cota=VP\)
Chứng minh đẳng thức:
tan x + c o t x + tan 3 x + c o t 3 x = 8 cos 2 2 x sin 6 x
Rút gọn biểu thức sau A = (tanx + cotx)2 - ( tanx - cotx)2
A. 3
B. 4
C. 2
D. 1
Chứng minh các đẳng thức:
a) sin 8 x cos 6 x - cos 8 x sin 6 x 1 - cos 2 x = c o t x
b) tan x sin π + x + sin x tan π 2 - x 1 - sin 2 x = cos x
Chứng minh đẳng thức lượng giác: 1/sin2x = cotx - cot2x
b) Từ kết quả trên,tính giá trị biểu thức
S = 1/sin4o + 1/sin8o + 1/sin16o +...+ 1/sin4096o
a. cho sin a + cos a = \(\frac{-1}{3}\)tính sin a .cos a
b. chứng minh đẳng thức \(\frac{sin4x}{1+cos4x}.\frac{cos2x}{1+cos2x}=tanx\)
\(\sqrt{sin^2x\left(1+cotx\right)+cos^2x\left(1+tanx\right)}\)
Rút gọn giúp tui nha~~
a) \(1-cot^4x=\frac{2}{sin^2x}-\frac{1}{sin^4x}\)
b)\(\frac{1-2sinx.cosx}{cos^2-sin^2}\)\(=\frac{1-tanx}{1+tanx}\)\(\)
c)\(\frac{sin^2x}{sinx-cosx}+\frac{sinx+cosx}{1-tanx}=sinx+cosx\)
d)\(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=\frac{2.cosx}{|sin|}\)
e)\(tan^3x+tan^2x+tanx+1=\frac{sinx+cosx}{cos^3x}\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}secx+tanx=\dfrac{22}{7}\\cscx+cotx=\dfrac{m}{n}\end{matrix}\right.\), với \(\dfrac{m}{n}\) tối giản.
Tính \(S=m+n\).
Chứng minh các đẳng thức