\(E=x^2+\left(x+1\right)^2\)
\(=x^2+x^2+2x+1\)
\(=2x^2+2x+1\)
\(=2\left(x^2+x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}>0\forall x\)
`E = x^2 + (x+1)^2 `
`= x^2 + x^2 + 2x + 1`
`= 2x^2 + 2x + 1`
`= 2(x^2 + x + 1/2) `
`= 2(x^2 + 2 . 1x . 1/2 + 1/4 + 1/4) `
`= 2(x^2 + 2 . 1x . 1/2 + 1/4) + 1/2`
`= 2 (x - 1/2)^2 + 1/2`
Do `(x - 1/2)^2 >= 0 ∀ x`
`<=> 2 (x - 1/2)^2 >= 0 ∀ x`
`<=> 2 (x - 1/2)^2 + 1/2 >=1/2 ∀ x`
Hay `E > 0 ∀ x (đpcm)`