Xét phương trình \(x^2-2\left(m+4\right)x+2m+6=0\)
\(\Delta'=\left(m+4\right)^2-\left(2m+6\right)=m^2+2m+16-2m-6=m^2+10>0\)
Vậy phương trình luôn có nghiệm với mọi \(m\)
Xét phương trình \(x^2-2\left(m+4\right)x+2m+6=0\)
\(\Delta'=\left(m+4\right)^2-\left(2m+6\right)=m^2+2m+16-2m-6=m^2+10>0\)
Vậy phương trình luôn có nghiệm với mọi \(m\)
Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Cho phương trình : x2 – (m + 1)x + 2m - 3 = 0
a) + Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Cho phương trình: \(x^2-\left(m+1\right)x+2m-3=0\)
a) Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m
b)Tìm giá trị của m để phương trình (1) có nghiệm bằng 3
Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
Các bạn giúp mình giải mấy bài toán khó lớp 9 này với! Thank nhiều!?
1)Viết đa thức f(x)= 3x^2-2x+4 theo lũy thừa giảm dần của (x-1) 2)Cho phương trình: x^2-2(m+1)x-3m^2 -2m-1=0 a- Chứng minh rằng: phương trình luôn có 2 nghiệm trái dấu với mọi giá trị của m b- Tìm các giá trị của m để phương trình có nghiệm x=-1 c- Tìm các giá trị của m để phương trình có 2 nghiệm x1,x2 thỏa... hiển thị thêm
Cho phương trình : x² - 2( m-1)x - 2m=0(I) a. Chứng tỏ rằng phương trình (I) luôn có hai nghiệm phân biệt với mọi giá trị m b. Tính X1 + X2 ; X1.X, theo m c. Tìm m để x1² + x2² = 4
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
cho phương trình x^2-2(m+1)x+2m=0 (m là tham số)
1) chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2) tìm các giá trị của m để phương trình có hai nghiệm cùng dương
3) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m
Cho phương trình x^2 – (2m + 1)x + m 2 + m – 1 = 0 (m là tham số) Chứng minh rằng phương trình đã cho luôn có nghiệm với mọi m.