Lời giải:
Ta có:
$\Delta=(2m+1)^2-4(m^2+m-1)=5>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có nghiệm với mọi $m\in\mathbb{R}$
Lời giải:
Ta có:
$\Delta=(2m+1)^2-4(m^2+m-1)=5>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có nghiệm với mọi $m\in\mathbb{R}$
X^2 - 2(m+2)X +2m+1=0(m là tham số)
Chứng minh rằng với mọi m phương trình luôn có hai nghiệm phân biệt X1;X2
cho phương trình x^2-2(m+1)x+2m=0 (m là tham số)
1) chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2) tìm các giá trị của m để phương trình có hai nghiệm cùng dương
3) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m
cho phương trình x2-(2m+1)x-m2+m-1=0(x là ẩn, m là tham số)
a) Giải phương trình với m=1
b) Chứng minh rằng phương trình luôn có 2 nghiệm trái dấu với mọi giá trị của m
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
Cho phương trình ẩn x: x² - ( m + 1 ) x + 2m - 2 = 0 a) Chứng minh phương trình luôn có nghiệm với mọi m.
Bài 3 (2,5 điểm)
Cho phương trình -x+(2m - 1)x + m – m^2 =0 (1) (với m là tham số).
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt. Tìm hai nghiệm đó khi m = 2.
b) Tìm tất cả các giá trị của m sao cho x1 (1-2x2)+x2(1-2x1)= mo, với x1 và x2, là hai nghiệm của phương trình (1).
c) Với X1 và X2 là hai nghiệm của phương trình (1), chứng minh rằng với mọi giá trị của m ta luôn có x1 - 2x1x2 + x2 < hoặc =1
Mong các bạn giúp mik!
Cho phương trình x 2 + 2 m − 1 x + 1 − 2 m = 0 (với m là tham số).
a) Giải phương trình với m= 2.
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
c) Tìm các giá trị của m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 .
cho phương trình : x2-2(m+1)x+2m-2=0 với x là ẩn số.
chứng minh rằng phuong trình luôn có hai nghiệm phân biệt với mọi x.
cho phương trình x2 - (2m - 1)x + m(m - 1) = 0 (với m là tham số )
a) giải phương trình khi m=1
b) chứng minh rằng phương trình luôn có hai nghiệm phân biệt
c) với x1, x2 là hai nghiệm của phương trình, tìm tất cả các giá trị của m sao cho 3x1 + 2x2 = 1