a: \(N\in NP\)
\(N\in\left(NMQ\right)\)
Do đó: \(N=NP\cap\left(MNQ\right)\)
b: Trong mp(PNQ), Gọi E là giao của NQ và HK
mà \(NQ\subset\left(MNQ\right)\)
nên \(E=HK\cap\left(MNQ\right)\)
c; \(K\in\left(MHK\right)\)
\(K\in QP\subset\left(NPQ\right)\)
Do đó: \(K\in\left(MHK\right)\cap\left(NPQ\right)\)
\(H\in NP\subset\left(NPQ\right)\)
\(H\in\left(MHK\right)\)
Do đó; \(H\in\left(MHK\right)\cap\left(NPQ\right)\)
=>\(\left(MHK\right)\cap\left(NPQ\right)=KH\)