f(x)>0 với mọi x khi và chỉ khi: \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b^2-4ac< 0\\a>0\end{matrix}\right.\)
f(x)>0 với mọi x khi và chỉ khi: \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b^2-4ac< 0\\a>0\end{matrix}\right.\)
Cho tam thức \(f\left(x\right)=ax^2+bx+c\left(a\ne0\right),\Delta=b^2-4ac\)
Ta có: \(f\left(x\right)\le0.với.\forall x\in R\) khi và chỉ khi?
Giải thích rõ giúp em với ạ, em không hiểu cách xác định dấu:(
Cho đa thức \(f\left(x\right)=x^2+4x+3\). Thực hiện trò chơi sau, nếu trên bảng đã có đa thức \(P\left(x\right)=ax^2+bx+c\) thì được phép viết thêm lên bảng một trong 4 đa thức sau:
1) \(Q\left(x\right)=cx^2+bx+a\)
2) \(R\left(x\right)=P\left(x+t\right)\) với \(t\) là số thực bất kì khác 0.
3) \(S\left(x\right)=x^2.f\left(\dfrac{1}{x}+1\right)\)
4) \(T\left(x\right)=\left(x-1\right)^2.f\left(\dfrac{1}{x-1}\right)\).
Hỏi sau một số bước ta có thể viết được đa thức \(g\left(x\right)=x^2+10x+9\) hay không?
Cho a,b,c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\)với mọi \(x\in R\). Tìm giá trị nhỏ nhất của biểu thức \(F=\frac{4a+c}{b}\)
1. Cho đa thức \(P\left(x\right)=ax^2+bx+c\left(a\ne0\right)\). CMR tồn tại nhiều nhất một đa thức \(Q\left(x\right)\) bậc \(n\) thỏa mãn \(P\left(Q\left(x\right)\right)=Q\left(P\left(x\right)\right)\)
2. Cho \(a,b,c\) là các số dương thỏa \(a^2+b^2+c^2+abc=4\). CMR \(a+b+c\ge a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}\)
Giúp mình làm mấy bài này với, vài ngày nữa mình phải nộp rồi mà đến giờ mình vẫn chưa nghĩ ra được ý tưởng gì cả. Mình cảm ơn trước nhé.
1.tìm m để phương trình \(x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(x\ne0\right)\) có nghiệm
2. cho hàm số y=f(x)=\(x^2-4x+3\)
tìmcác giá trị nguyên của m để
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
tìm \(f:R\rightarrow R\)thỏa mãn : \(f\left(x\right)=\frac{x}{f\left(\frac{1}{x}\right)}\), \(x\ne0\)và \(f\left(x\right)+f\left(y\right)=1+f\left(x+y\right)\)với \(x\ne0,y\ne0\)
Cho phương trình \(\left(m+3\right)x^2-2\left(m+1\right)x+m=0\). Khi phương trình có hai nghiệm x1, x2, tìm a để biểu thức \(F=\left(x1-a\right)\left(x2-a\right)\)không phụ thuộc vào m
Cho hàm số \(f\left(x\right)\) là hàm số bậc hai với hệ số \(a>0\), thỏa mãn \(\left|f\left(x\right)\right|\le1,\forall x\in\left[-1;1\right]\) và biểu thức \(P=\dfrac{8}{3}a^2+2b^2\) đạt giá trị lớn nhất. Tính giá trị của biểu thức \(Q=5a+11b+c.\)
Cho các số thực a,b,c (\(a\ne0\)) sao cho phương trình \(ax^2+bx+c=0\)có 2 nghiệm \(\in\left[0;1\right]\). Tìm giá trị lớn nhất của biểu thức: \(P=\frac{\left(a-b\right)\left(2a-b\right)}{a\left(a-b+c\right)}\)