Cho hàm số \(f\left(x\right)=\left|x^2-2x+m\right|\) với \(m\in\left[-2018;2018\right]\). Gọi \(M\) là giá trị nhỏ nhất của hàm số \(f\left(x+\dfrac{1}{x}\right)\) trên tập \(R\backslash\left\{0\right\}\). Số giá trị \(m\) nguyên để \(M\ge2\) là bao nhiêu?
Cho hàm số \(y=f\left(x\right)=x^2+6x+5\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y=f\left(f\left(x\right)\right)\) với \(x\in\left[-3;0\right]\). Tính tổng \(S=m+M.\)
1. Tìm tất cả các giá trị của \(a\) sao cho tồn tại duy nhất một hàm \(f:ℝ\rightarrowℝ\) thỏa mãn điều kiện \(f\left(x^2+y+f\left(y\right)\right)=\left[f\left(x\right)\right]^2+ay,\forall x,y\inℝ\)
2. Tìm tất cả các hàm \(f:ℝ^+\rightarrowℝ^+\) thỏa mãn \(f\left(x\right).f\left(y\right)=f\left(x+yf\left(x\right)\right),\forall x,y\inℝ^+\)
Giúp mình 2 bài này với, ngày mai là mình phải nộp rồi, cảm ơn các bạn trước nhé.
\(\sqrt{2f^2\left(x\right)+mf\left(x\right)-m-1}=f\left(x\right)-1\). Biết f(x) là hàm số bậc hai và có giá trị lớn nhất là 3. Tìm m để phương trình có 4 nghiệm.
Cho các số x, y, z thỏa mãn x+ y+ xyz= z. Giá trị lớn nhất của biểu thức P=\(\dfrac{2x}{\sqrt{\left(x^2+1\right)^3}}+\dfrac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Giả sử phương trình bậc hai ẩn x (m là tham số): \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\\ \)
có hai nghiệm x1,x2 thỏa mãn điều kiện \(x_1+x_2\le4\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức sau:
\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)
Cho đa thức f(x) bậc ba với hệ số thỏa mãn :\(|f\left(1\right)|=|f\left(2\right)|=|f\left(3\right)|=|f\left(4\right)|=|f\left(5\right)|=|f\left(6\right)|=|f\left(7\right)|=12\)
Tính \(|f\left(0\right)|\)
Tìm giá trị nhỏ nhất của hàm số sau : \(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2},x\in\left[0;\sqrt{3}\right]\)
Tìm tất cả các hàm số \(f:\left(0;+\infty\right)\rightarrow\left(0;+\infty\right)\) thỏa mãn
\(f\left(x+f\left(y\right)+y\right)=f\left(2x\right)+f\left(y\right),\forall x,y\in\left(0;+\infty\right)\)