Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
Bài 9: Cho đường tròn (O) ngoại tiếp tam giác ABC nhọn, kẻ đường cao BE, CF của tam giác ABC. BE cắt CF tại H. BE cắt (O) tại M, CF cắt (O) tại N. Chứng minh: a) B, C, E, F cùng thuộc 1 đường tròn. b) A, E, H, F cùng thuộc 1 đường tròn. c) AM = AN. d) MN // EF. e) OA vuông góc EF.
Bài 9: Cho đường tròn (O) ngoại tiếp tam giác ABC nhọn, kẻ đường cao BE, CF của tam giác ABC. BE cắt CF tại H. BE cắt (O) tại M, CF cắt (O) tại N. Chứng minh:
a) B, C, E, F cùng thuộc 1 đường tròn.
b) A, E, H, F cùng thuộc 1 đường tròn.
c) AM = AN.
d) MN // EF.
e) OA vuông góc EF.
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Đường cao BE, CF cắt nhau tại H a) chứng minh bốn điểm B, F, E, C cùng thuộc đường tròn b) kẻ đường kính AA' của đường tròn tâm O. Chứng minh tứ giác BHCA' là hình bình hành
cho tam giac ABC nhọn ,nội tiếp đường tròn tâm (O). Ba đường cao AD,BE,CF của tam giác ABC cắt nhau tại H a) Chứng minh B,C,E,F thuộc cùng 1 đường tròn b)Chứng minh HA.HD=HB.HE=HC.HF c)Chứng minh DH là tia phân giác của góc EDF
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O, các đường cao BE, CF cắt nhau tại H
a) Chứng minh rằng: 4 điểm B, F, E, C thuộc cùng một đường cao
b) Kẻ đường kính AA' của đường tròn tâm O. Chứng minh: tứ giác BHCA' là hình bình hành
c) Chứng minh: 4 điểm A, F, H, E cùng thuộc một đường tròn
cho tam giác ABC nhọn nối tiếp đường tròn o, các đường cao AD,BE,CF cắt nhau tại H. chứng minh
a) các điểm A,E,H,F;B,D,H,F;C,D,H,E;B,C,E,F;A,B,D,E;A,C,D,F cùng thộc một đường tròn (6 ý riêng)
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O.Các đường cao AD,BE,CF cắt nhau tại H và cắt (O) tại M,N,P.
a) Chứng minh AEHF nội tiếp
b) Chứng minh B,C,E,F thuộc 1 đường tròn
c) Chứng minh rằng AE*AC=AH*AD;AD*BC=BE*AC
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
b) Bốn điểm B, C, E, F cùng nằm trên một đường tròn
Cho tam giác ABC có 3 góc nhọn nội tiếp (O). Vẽ các đường cao AD, BE, CF cắt nhau tại H. a/ Chứng mính bốn điểm C, D, ,H,E cùng thuộc một đường tròn tâm I. b/ Chứng minh bốn điểm B, F,E,C cùng thuộc một đường tròn tâm K. c/ Gọi M là trung điểm AH. Chứng minh: góc MEK = 90⁰
Tam giác ABC nhọn AB<AC nội tiếp đường tròn tâm O các đường cao BE,CF cắt nhau tại H.
a) Chứng minh: 4 điểm B,C,E,F thuộc 1 đường tròn
b) Vậy M là trung điểm BC, AM cắt HO tại G. Chứng minh G là trọng tâm tam giác ABC.