Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn tâm O. Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh bốn điểm A,B,H,E cùng nằm trên một đường tròn.
b) Chứng minh HE//CD.
c) Gọi M là trung điểm của BC. Chứng minh ME=MF
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Đường cao BE, CF cắt nhau tại H a) chứng minh bốn điểm B, F, E, C cùng thuộc đường tròn b) kẻ đường kính AA' của đường tròn tâm O. Chứng minh tứ giác BHCA' là hình bình hành
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O, các đường cao BE, CF cắt nhau tại H
a) Chứng minh rằng: 4 điểm B, F, E, C thuộc cùng một đường cao
b) Kẻ đường kính AA' của đường tròn tâm O. Chứng minh: tứ giác BHCA' là hình bình hành
c) Chứng minh: 4 điểm A, F, H, E cùng thuộc một đường tròn
Cho tam giác ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. M là trung điểm của BC. a) Chứng minh 4 điểm B, F, E, C cùng thuộc một đường tròn. Xác định tâm của đường tròn đó. b) Chứng minh tam giác AEF và tam giác ABC đồng dạng. c) Chứng minh OM = 1/2 AH
Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng: Tứ giác CEHD, nội tiếp .Bốn điểm B,C,E,F cùng nằm trên một đường tròn.AE.AC = AH.AD; AD.BC = BE.AC.H và M đối xứng nhau qua BC.Xác định tâm đường tròn nội tiếp tam giác DEF.Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
Chứng minh tứ giác CEHD nội tiếp .Bốn điểm A, E, D, B cùng nằm trên một đường tròn.Chứng minh ED = 1/2BC.Chứng minh DE là tiếp tuyến của đường tròn (O).Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm.cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O và AB < AC . vẽ đường kính AD của đường tròn (O) . kẻ BE và CF vuông góc với AD (E,F thuộc AD) . kẻ AH vuông góc với BC (H thuộc BC).
1) chứng minh bốn điểm A, B, H, E cùng nằm trên một đường tròn.
2) chứng minh HE song song với CD.
3) goi M là trung điểm của BC . chứng minh ME = MF
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
b) Bốn điểm B, C, E, F cùng nằm trên một đường tròn
Cho tam giác ABC có ba góc nhọn. Đường tròn (O; R) có đường kính BC cắt AB, AC lần lượt tại F và E; BE cắt CF tại H
a, Chứng minh tứ giác AFHE nội tiếp. Từ đó, xác định tâm I của đường tròn ngoại tiếp tứ giác này
b, Tia AH cắt BC tại D. Chứng minh HE.HB = 2HD.HI
c, Chứng minh bốn điểm D, E, I, F cùng nằm trên một đường tròn
Cho tam giác ABC có ba góc nhọn nội tiếp (O), các đường cao AD, BE, CF cắt nhau tại H. Gọi I là trung điểm BC.
a) Chứng minh 4 điểm B, F, E, C cùng thuộc một đường tròn
b) Kẻ AA' của (O). Chứng minh tứ giác BHCA' là hình bình hành
c) Chứng minh OI= 1/2 AH