a: góc AHM+góc AKM=180 độ
=>AHMK nội tiếp
b: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
góc HBM=góc KCM
=>ΔMHB đồng dạng vơi ΔMKC
=>MH/MK=MB/MC
=>MH*MC=MB*MK
a: góc AHM+góc AKM=180 độ
=>AHMK nội tiếp
b: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
góc HBM=góc KCM
=>ΔMHB đồng dạng vơi ΔMKC
=>MH/MK=MB/MC
=>MH*MC=MB*MK
Cho tam giác ABC nhọn nội tiếp đường tròn (O) .Gọi M là một điểm đi động trên cung nhỏ BC của đường tròn (O) ,(M không trùng với B và C ). Gọi H,K,D theo thứ tự là chân các đường vuông góc kẻ từ M đến các đường thẳng AB,AC,BC. Kẻ hình hộ mình với a) Chứng mình tứ giác AHMK nội tiếp đường tròn. b) Chứng minh MH.MC=MK.MB
Cho tam giác ABC nhọn nội tiếp đường tròn (O) .Gọi M là một điểm đi động trên cung nhỏ BC của đường tròn (O) ,(M không trùng với B và C ). Gọi H,K,D theo thứ tự là chân các đường vuông góc kẻ từ M đến các đường thẳng AB,AC,BC. Kẻ hình hộ mình với a) Chứng mình tứ giác AHMK nội tiếp đường tròn. b) Chứng minh MH.MC=MK.MB
Cho tam giác ABC nhọn nội tiếp đường tròn (O) .Gọi M là một điểm đi động trên cung nhỏ BC của đường tròn (O) ,(M không trùng với B và C ). Gọi H,K,D theo thứ tự là chân các đường vuông góc kẻ từ M đến các đường thẳng AB,AC,BC. Kẻ hình hộ mình với a) Chứng mình tứ giác AHMK nội tiếp đường tròn. b) Chứng minh MH.MC=MK.MB
ho tam giác nhọn nội tiếp đường tròn . Gọi là một điểm di động trên cung nhỏ của đường tròn ( không trình với ). Gọi theo thứ tự là chân các đường vuông góc kẻ từ đến các đường thẳng .
a) Chứng minh tứ giác nội tiếp đường tròn.
b) Chứng minh .
cho tam giác ABC nội tiếp đường tròn (O). gọi M là 1 điểm bất kỳ thuộc cung AC . gọi H,I,K theo thứ tự là chân các đường vuông góc kẻ từ M đến AB,AC,BC . CMR
a) A,H,M,I cùng thuộc 1 đường tròn
b) tứ giác MIKC nội tiếp được đường tròn
c) H,I,K thẳng hàng
AI BIẾT GIÚP MIK VS Ạ, MIK CẢM ƠN NHÌUUUU
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.
Cho tam giác ABC nhọn nối tiếp đường tròn tâm O. Trên cung nhỏ BC lấy điểm M sao cho AM không là đường kính (M không trùng B, C). Gọi I, H, K lần lượt là hình chiếu của điểm M trên các đường thẳng BC, AB, AC. Chứng minh ba điểm H, I, K thẳng hàng
Cho đường tròn (O;R). Từ điểm A nằm bên ngoài đường tròn kẻ các tiếp tuyến AC, AC với đường tròn (B và C là các tiếp điểm). Gọi H là trung điểm của BC
a. Chứng minh 3 điểm A,B,C,O thuộc 1 đường tròn
b. Chứng minh 3 điểm A,H,O thẳng hàng.Kẻ đường kính BD của đường tròn (O;R). Vẽ CK vuông góc với BD. Chứng minh \(AC.CD=CK.AO\)
c. Gọi giao điểm của AO với đường tròn tâm O là N. Chứng minh N là tâm đường tròn nội tiếp tam giác ABC
d.Khi A di động trên tia By cố định, gọi M là trực tâm của tam giác ABC. Chứng minh M di động trên 1 đường cố định
Cho đường tròn (O; R). Từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là trung điểm của BC
a, Chứng minh ba điểm A, H, O thẳng hàng và các điếm A, B, C, O cùng thuộc một đường tròn
b, Kẻ đường kính BD của (O). Vẽ CK vuông góc vói BD. Chứng minh AC.CD = CK.AO
c, Tia AO cắt đường tròn (O) tại M (M nằm giữa A và O). Chứng minh M là tâm đường tròn nội tiếp tam giác ABC
d, Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK