a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b:Xét ΔHCA có HK/HC=HO/HA
nên OK//AC và OK/AC=HK/HC=1/2
=>AC=2OK
Xét ΔKEO và ΔKHO có
KE=KH
OE=OH
KO chung
=>ΔKEO=ΔKHO
=>góc KEO=90 độ
=>DE vuông góc EK
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b:Xét ΔHCA có HK/HC=HO/HA
nên OK//AC và OK/AC=HK/HC=1/2
=>AC=2OK
Xét ΔKEO và ΔKHO có
KE=KH
OE=OH
KO chung
=>ΔKEO=ΔKHO
=>góc KEO=90 độ
=>DE vuông góc EK
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC
a) chứng minh tứ giác ADHE là hình chữ nhật
b) gọi K là trung điểm của HC. Chứng minh rằng DE ⊥ EK
Cho tam giác ABC vuông tại A ,đường cao AH ,Gọi D,E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB,AC a.Chứng minh tứ giác ADHE là hình chữ nhật b.Gọi I là trung điểm của HB ,Chứng minh DI vuông góc với DE c.Gọi K là trung điểm của HC .Chứng minh IDEK là hình thang vuông d.Giả sử DI = 1 cm ; EK = 4cm và AH = 6 cm .Tính diện tích tam giác ABC
Cho tam giác ABC vuông ở A, đường cao AH. Gọi D, E lần lượt là chân đường vuông góc kẻ từ H đến AB, AC; O là giao điểm của AH và DE .
Gọi I, K theo thứ tự là trung điểm của HB, HC. Chứng minh tam giác IDO = tam giác IHO
Giúp mik với đang cần gấp:((
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ H đến AB, AC
a, Chứng minh AH=DE
b, Gọi I, K theo thứ tự là trung điểm của HB và HC. Chứng minh tứ giác IDKE là hình thang vuông
Cho tam giác ABC vuông ở A đường cao AH. Gọi D ,E lần lượt là chân đường vuông góc kẻ từ H đến AB ,AC; O là giao điểm của AH, DE. a) chứng minh AH = DE b) gọi I, K theo thứ tự là trung điểm của HB, HC. Chứng minh tam giác IDO bằng tam giác IHO c) Chứng minh tứ giác DIKE là hình thang
Cho ∆ ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC. a) Chứng minh tứ giác AHDE là hình chữ nhật. b) Gọi I là trung điểm của HB. Chứng minh DI vuông góc vơi DE. c) Gọi K là trung điểm của HC. Chứng minh IDEK là hình thang
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC) a) Chứng minh tứ giác ADHE là hình chữ nhật. b) Gọi I là trung điểm của đoạn thẳng HC. Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng AC // HK. c) Chứng minh tứ giác DECK là hình thang cân. d) Gọi O là giao điểm của DE và AH; Gọi M là giao điểm của AI và CO. Chứng minh AM = 1/3 AK
Cho hình tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc, kẻ từ H cho đến đường thẳng AB, AC. Chứng minh :
a) Chứng minh : AH = DE
b) Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh : DI song song với EK.
Câu 3 (3,0 điểm). Cho tam giác ABC vuông tại A (AB > AC), đường cao AH. Kẻ HD vuông góc với AB D AB , kẻ HE vuông góc với AC E AC . Gọi O là giao điểm của AH và DE. a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật và OA = OE b) Chứng minh rằng: ABC AED c) Gọi I là trung điểm của BC. Chứng minh rằng: AI vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là chân đường vuông góc kẻ từ H đến AB, AC.
a) Chứng minh AH = DE.
b) Gọi I và K theo thứ tự là trung điểm của HB và HC. Chứng minh tứ giác DIKE là hình thang vuông.
c) Tính độ dài đường trung bình của hình thang DIKE nếu biết AB = 6cm, AC = 8cm.