Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dinhhoanglong

Cho tam giác ABC vuông ở A có AB=8cm,BC=10cm,đường cao AH với H € BC . Tính BH,CH,AH

@DanHee
15 tháng 10 2023 lúc 15:00

Theo định lý Pytago 

\(AB^2+AC^2=BC^2\\ \Rightarrow AC=\sqrt{10^2-8^2}=6\left(cm\right)\)

Tam giác ABC vuông tại A , đg cao AH

\(AB^2=BH.BC\\ \Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{8^2}{10}=\dfrac{32}{5}\left(cm\right)\\ AC^2=HC.BC\\ \Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{6^2}{10}=\dfrac{18}{5}\left(cm\right)\)

\(AB.AC=AH.BC\\ \Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=\dfrac{24}{5}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 14:59

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-8^2=36\)

=>\(AC=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{8^2}{10}=6.4\left(cm\right)\\CH=\dfrac{6^2}{10}=3.6\left(cm\right)\\AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\end{matrix}\right.\)

HT.Phong (9A5)
15 tháng 10 2023 lúc 15:00

Áp dụng định lý Py-ta-go vào tam giác ABC ta có:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-8^2}=6\left(cm\right)\) 

Ta có:

\(AH\cdot BC=AB\cdot AC\Rightarrow AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\)

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Chau Pham
Xem chi tiết
Caodangkhoa
Xem chi tiết
Dinhhoanglong
Xem chi tiết
Trọnghoidap
Xem chi tiết
Dinhhoanglong
Xem chi tiết
nguyễn thị hương
Xem chi tiết
Tam Akm
Xem chi tiết
Minh Ngô
Xem chi tiết
Chau Pham
Xem chi tiết