Theo định lý Pytago
\(AB^2+AC^2=BC^2\\ \Rightarrow AB=\sqrt{25^2-20^2}=15\left(cm\right)\)
Tam giác ABC vuông tại A , AH đg cao
\(AB.AC=AH.BC\\ \Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
\(AB^2=BH.BC\\ \Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
\(AC^2=CH.BC\\ \Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{20^2}{25}=16\left(cm\right)\)
ΔACB vuông tại A
=>\(AC^2+AB^2=BC^2\)
=>\(AB^2=25^2-20^2=225\)
=>\(AB=\sqrt{225}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{15^2}{25}=9\left(cm\right)\\CH=\dfrac{20^2}{25}=16\left(cm\right)\\AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\end{matrix}\right.\)