Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC có ba góc nhọn (AB < AC), M là trung điểm của BC. Trên tia AM lấy điểm D sao cho AM = MD.
a) Chứng minh tứ giác ABDC là hình bình hành.
b) Vẽ đường cao AH. Gọi K là điểm đối xứng của A qua H. Tứ giác BKDC là hình gì? Vì sao?
c) Gọi O là giao điểm của BD và CK. Gọi I, E, F lần lượt là trung điểm của OC, OD, BK. Giả sử IE = IF. Tính số đo góc .
Cho tam giác ABC có ba góc nhọn (AB < AC), M là trung điểm của BC. Trên tia AM lấy điểm D sao cho AM = MD.
a) Chứng minh tứ giác ABDC là hình bình hành.
b) Vẽ đường cao AH. Gọi K là điểm đối xứng của A qua H. Tứ giác BKDC là hình gì? Vì sao?
c) Gọi O là giao điểm của BD và CK. Gọi I, E, F lần lượt là trung điểm của OC, OD, BK. Giả sử IE = IF. Tính số đo góc ACB .
Bài 2 Cho tam giác nhọn ABC (AB < AC). Gọi M là trung điểm của BC. Trên tia
đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh ABM = DCM.
b) Kẻ AH vuông góc với BC (H BC). Vẽ điểm E sao cho H là trung điểm
của EA. Chứng minh BE = CD.
Bài 3: . Cho ΔABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm
của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh ΔABD = ΔACD
b) Chứng minh rằng AM = 2.BD
c) Tính số đo của ·MAD
GIÚP EM VS BÀ CON ƠI
Cho tam giác ABC (AB < AC), có AM là trung tuyến (M thuộc BC). Trên tia đối của tia MA lấy điểm E sao cho ME = MA, nối B với E.
a) Chứng minh rằng: BE = AC và BE // AC.
b) Gọi D là trung điểm của AB. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng A là trung điểm của CF.
c) So sánh độ lớn hai góc BAM và MAC
cho tam giác abc nhọn (ab<ac) CÓ ĐƯờng trung tuyến am. gọi i là trung điểm của ac,trên tia đối của tia im lấy điểm e sao cho ie=im . a, chứng minh ae=CM ,AE\\cm b, chứng minh be đi qua trung điểm k của aem
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm D, trên tia đối của tia AC lấy điểm E sao cho AD = AE. Gọi M là trung điểm của BC. Chứng minh rằng D đối xứng với E qua AM.
Cho tam giác ABC cân tại A .Trên tia đối của tia AB lấy điểm D ,trên tia đối của tia AC lấy điểm E sao cho AD=AE .Gọi M là trung điểm của BC . Chứng minh rằng D đối xứng với E qua AM
cho tam giác ABCcó AB=AC. M là trung điểm BC : a) chứng minh: tam giác ABMvà am = BC: trên tia đối của MA, chứng minh, DC=AB và DC//AB: gọi N la trung điểm AC trên tia BN lấy điểm K sao cho N là trung điểm của BK, chứng minh ba điểm D,C,K, thẳng hàng.