Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
1. Cho tam giác ABC có M là trung điểm của AC trên tia đối của tia BA lấy điểm D sao cho AB = BD gọi E là giao điểm của DM với BC.
a) so sánh DE và EC ; ME và DM
b) Gọi N là trung điểm của DC chứng minh 3 điểm A,E,N thẳng hàng.
2. Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên cạnh AC lấy điểm E sao cho AE=1/3AC. Tia BE cắt CD tại M. Chứng minh M là trung điểm của CD
* Kẻ hình hộ mình vs
* mình đang cần gấp nha
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của cạnh BC. Gọi I là trung điểm của AM. Trên tia CI lấy điểm N sao co CN = 2CI. Chứng minh rằng
a) AN // BC
b)Trên tia BI lấy điểm K sao co BK = 2BI. CMR: N, A, K thẳng hàng
c) AM vuông góc với NK
Cho tam giác ABC vuông tại A có AB= a. Gọi M, N, D lần lượt là trung điểm của AB, BC,AC.
a) Chứng minh ND là đường trung bình của tam giác ABC và tính độ dài của ND theo a.
b) Chứng minh tứ giác ADNM là hình chữ nhật.
c) Gọi Q là điểm đối xứng của N qua M. Chứng minh AQBN là hình thoi.
d) Trên tia đối của tia DB lấy điểm K sao cho DK= DB. Chứng minh 3 điểm Q, A, K thẳng hàng.
Bài 3. Cho hình chữ nhật ABCD. Gọi M, N lần lượt là trung điểm AD, BC. E là một điểm nằm trên tia đối của tia DC. Dựng tia Nx sao cho NM là phân giác ∠xNE. Nx giao EM tại K. Chứng minh rằng A, K, C thẳng hàng.
Bài 4. Cho tam giác ABC, trực tâm H. M là trung điểm BC. Qua H kẻ một đường thẳng cắt hai cạnh AB, AC tại E, F sao cho HE = HF. Chứng minh rằng MH ⊥ EF.
Bài 5. Cho tam giác ABC. M, N, P lần lượt là các điểm trên cạnh BC, CA, AB. AM giao BN tại I, BN giao CP tại J, CP giao AM tại K. Biết SAIN = SBJP = SCKM = SIJK. Chứng minh rằng SAIJP = SBJKM = SCKIN .
Bài 6. Cho tam giác ABC có trực tâm H. M là điểm nằm trong tam giác sao cho ∠ABM = ∠ACM. Kẻ ME ⊥ AC, MF ⊥ AB. Gọi K là trực tâm tam giác AEF. Chứng minh rằng K, M, H thẳng hàng.
Cho tam giác ABC , trên tia đối của tia AB lấy điểm D , trên tia đối của tia AC lấy điểm E sao cho AC = AE, AB=AD
a, Chứng minh tam giác ABC = tam giác ADE
b , Chứng minh DE song song với BC
c, Gọi M là trung điểm của EB , N là trung điểm của BC
CM : M;A;N thẳng hàng
(không cần hình đã vẽ được :) )
cho tam giác abc . m là trung điểm của ac . trên tia đối của tia mb lấy d sao cho bm=md
a, chứng minh tam giác abm=tam giác cdm
b, chứng minh ab //cd
c, trên dc kéo dài lấy điểm n sao cho cd =cn (c ko thuộc n ), chứng minh bn// ac
Cho tam giác ABC vuông tại A có AB<AC. Gọi M,N và E lần lượt là trung điểm của AB,AC và BC. Trên tia đối của tia NB lấy D sao cho N là trung điểm BD
a) Với AB=12cm, AC=16cm Tính dộ dài BC và MN
b) Chứng minh tứ giác ABCD là hình bình hành
c) Trên tia đối của tia EA lấy K sao cho E là trung điểm của AK. Chứng minh tứ giác ABKC là hình chữ nhật
d) TRên AD lấy điểm F sao cho AF=FC. Chứng minh tứ giác AFCE là hình thoi
e) Từ B vẽ đường thẳng vuông góc với BC cắt đường thẳng CA tại I. Trên tia đối của tia IB lấy điểm H sao cho I là trung điểm của BH. Chứng minh HA vuông góc với BN
CÁC BẠN CHỈ CẦN LÀM PHẦN D VỚI E HỘ MÌNH THÔI ;; ;; HAI PHẦN NÀY KHÓ QUÁ .. HELP ME,pls !!
Cho tam giác ABC vuông tại A có AB<AC. Gọi M,N và E lần lượt là trung điểm của AB,AC và BC. Trên tia đối của tia NB lấy D sao cho N là trung điểm BD
a) Với AB=12cm, AC=16cm Tính dộ dài BC và MN
b) Chứng minh tứ giác ABCD là hình bình hành
c) Trên tia đối của tia EA lấy K sao cho E là trung điểm của AK. Chứng minh tứ giác ABKC là hình chữ nhật
d) TRên AD lấy điểm F sao cho AF=FC. Chứng minh tứ giác AFCE là hình thoi
e) Từ B vẽ đường thẳng vuông góc với BC cắt đường thẳng CA tại I. Trên tia đối của tia IB lấy điểm H sao cho I là trung điểm của BH. Chứng minh HA vuông góc với BN
CÁC BẠN CHỈ CẦN LÀM PHẦN D VỚI E HỘ MÌNH THÔI ;; ;; HAI PHẦN NÀY KHÓ QUÁ .. HELP ME,pls !!!!!!