a: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạng với ΔAHD
b: ΔHAC vuông tại H có HE vuông góc AC
nên HE^2=AE*EC
a: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạng với ΔAHD
b: ΔHAC vuông tại H có HE vuông góc AC
nên HE^2=AE*EC
Cho tam giác ABC có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, Tam giác ABH đồng dạng tam giác AHD
b, \(HE^2=AE.EC\)
c, Gọi M là giao điểm của BE và CD. CMR: tam giác DBM đồng dạng tam giác ECM.
Cho tam giác ABC có AH là đường cao(H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, tam giác ABH đồng dạng với tam giác AHD
b,HE\(^2\)=AE.EC
c,Gọi M là giao điểm của BE và CD. Chứng minh rằng tam giác DBM đồng dạng với tam giác ECM
cho Tam giac abc có AH la đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BE và CD. CMR: tam giác DBM đồng dạng với tam giác ECM
Cho tam giác ABC có đường cao AH (H ∈ BC).Gọi D và E lần lượt là hình của H trên AB và AC.Chứng minh rằng:
a) △ABH ∞ △AHD
b) HE2 = AE.EC
c) Gọi M là giao điểm của BE và CD.Chứng minh △DBM ∞ △ECM
Cho△ ABC có AH là đường cao(HϵBC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. CMR:
a) △ABH ∼ △ AHD
b)HE2 = AE.EC
c) Gọi M là giao điểm của BE và CD. CMR △DBM ∼ △ECM
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng a, aehd là hình chữ nhật b, tam giác abh đồng dạng tam giác ahd c, he^2=ae.ec d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a) AEHD là hình chữ nhật
b) △ABH ~ △AHD
c) HE2 = AE.EC
d) Gọi M là giao điểm của BE và CD. Chứng minh rằng △DBM ~ △ECM
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng
a, aehd là hình chữ nhật
b, tam giác abh đồng dạng tam giác ahd
c, he^2=ae.ec
d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm
cho tam giác ABC vuông tại A có AH là đường cao
a, cm : tg AHC đồng dạng với tg BAC . Suy ra AC^2 = CH.BC
b, cm: tg HAB đồng dạng HCA . Viết các tỉ số đồng dạng
c,Gọi I và K lần lượt là trung điểm của cạnh AH và HC . Chứng minh góc ABI = góc ACK
d, Đường thẳng vuông góc với BC tại C cắt BI tại N , BN cắt AM tại M . CM : MI.BN=MN.BI