cho tam giác abc có 3 gọc nhọn và ab ac. gọi m là trung điểm bc. Trên đoạn AM lấy điểm P sao cho CP=AB. Trên tia đối của tia AM lấy điểm Q sao cho BQ = AC. Chứng minh A là Trung điểm của PQ
Cho tam giác ABC có ba góc nhọn có AB < AC. Gọi M là trung điểm của BC. Trên
đoạn AM lấy điểm P sao cho CP = AB. Trên tia đối của tia AM lấy điểm Q sao cho BQ =
AC. Chứng minh rằng: A là trung điểm của PQ
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
1)tam giác ABC nhọn, trên tia đối AB lấy D sao cho AB=AD, trên tia đối AC lấy điểm M sao cho AC=AM . Tứ giác BCDM là hình j ? why ? 2) Cho tam giác ABC vuông tại A , biết AB=3cm, AC=4cm a) Tính AC b) Gọi M là trung điểm của BC, trên tia đối của MA lấy D sao cho MA=MD. Tứ giác ABCD là hình j ? why ?
Bài 2 Cho tam giác nhọn ABC (AB < AC). Gọi M là trung điểm của BC. Trên tia
đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh ABM = DCM.
b) Kẻ AH vuông góc với BC (H BC). Vẽ điểm E sao cho H là trung điểm
của EA. Chứng minh BE = CD.
Bài 3: . Cho ΔABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm
của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh ΔABD = ΔACD
b) Chứng minh rằng AM = 2.BD
c) Tính số đo của ·MAD
GIÚP EM VS BÀ CON ƠI
cho tam giác abc nhọn (ab<ac) CÓ ĐƯờng trung tuyến am. gọi i là trung điểm của ac,trên tia đối của tia im lấy điểm e sao cho ie=im . a, chứng minh ae=CM ,AE\\cm b, chứng minh be đi qua trung điểm k của aem
cho tam giác ABCcó AB=AC. M là trung điểm BC : a) chứng minh: tam giác ABMvà am = BC: trên tia đối của MA, chứng minh, DC=AB và DC//AB: gọi N la trung điểm AC trên tia BN lấy điểm K sao cho N là trung điểm của BK, chứng minh ba điểm D,C,K, thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm D, trên tia đối của tia AC lấy điểm E sao cho AD = AE. Gọi M là trung điểm của BC. Chứng minh rằng D đối xứng với E qua AM.
Cho tam giác ABC (AB < AC), có AM là trung tuyến (M thuộc BC). Trên tia đối của tia MA lấy điểm E sao cho ME = MA, nối B với E.
a) Chứng minh rằng: BE = AC và BE // AC.
b) Gọi D là trung điểm của AB. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng A là trung điểm của CF.
c) So sánh độ lớn hai góc BAM và MAC
Cho tam giác ABC cân tại A .Trên tia đối của tia AB lấy điểm D ,trên tia đối của tia AC lấy điểm E sao cho AD=AE .Gọi M là trung điểm của BC . Chứng minh rằng D đối xứng với E qua AM