a: Xét ΔKBC có
HB<HC
mà HB là hình chiếu của KB trên BC
và HC là hình chiếu của KC trên BC
nên KC>KB
a: Xét ΔKBC có
HB<HC
mà HB là hình chiếu của KB trên BC
và HC là hình chiếu của KC trên BC
nên KC>KB
Cho tam giác ABC có ba góc nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác AMB = Tam giác DMC
b) Chứng minh: AB // CD
c) Vẽ AH vuông góc với BC (H thuộc BC). Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh: ME = MD.
d) Gọi K là trung điểm của ED. Chứng minh MK vuông góc với BC.
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M; HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
giúp mình 2,3,4 với ạ
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
help 2,3,4 đi
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M . Từ M kẻ đường thẳng song song với AD cắt DC tại N . Chứng
minh: A, E, N thằng hàng.
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M, AE cắt DC tại N. Chứng minh MN vuông góc với BC từ đó suy ra MN//AD
e/ Trên tia AB và DE lần lượt lấy điểm I và K sao cho AI=DK. Chứng minh K,H,I thẳng hàng
giúp mik vs ạ mik đang cần gấp
10.2 Dạng 1&3 : cho đoạn thẳng AB vé các điểm C,D sao cho tam giác ABC có 3 cạnh bằng nhau. CMR CD là tia phân giác của góc ACB.
10.4 Dạng 2&3: cho 4 điểm A,B,C,D thuộc đường tròn (O) sao cho AB=CD. CMR tam giác AOB= tam giác COB; góc ABC= góc ADC
11.3 dạng3 : cho tam giác ABC, kẻ AH vuông góc vs BC (H thuộc BC) trên tia đối tia HA , lấy điểm K sao cho HK=HA . Nối KB,KC. Tìm các cặp tam giác bằng nhau trong hình vẽ.
11.4 dạng4: cho tam giác ABC .gọi I là trung điểm của AC . Trên tia đối của IB lấy điểm E sao cho IE=IB. CMR: a) AK=KB;b) OK vuông góc với AB