xét tam giác ADC và tam giác BEC
có ACB^ chung
BEC^=ADC^=90
=>tam giác ADC đồng dạng với tam giác BEC (g-g)
=>\(\dfrac{EC}{BC}=\dfrac{DC}{AC}\)(1)
từ (1) kết hợp với ACB^ chung nên ta có tam giác DEC đồng dạng với tam giác ABC (c-g-c)
xét tam giác ADC và tam giác BEC
có ACB^ chung
BEC^=ADC^=90
=>tam giác ADC đồng dạng với tam giác BEC (g-g)
=>\(\dfrac{EC}{BC}=\dfrac{DC}{AC}\)(1)
từ (1) kết hợp với ACB^ chung nên ta có tam giác DEC đồng dạng với tam giác ABC (c-g-c)
cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H
a)cm tam giác ABE đồng dạng với tam giác ACF
b)HE.HB=HC.HF
c)góc AEF=góc ABC
d)EB là tia phân giác góc DEF
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Đường phân giác của góc ABC cắt cạnh AC tại D . Từ C kẻ CE vuông góc với BD tại E.
Cho tam giác ABC ba đường trung tuyến AD, BE,CF .Từ E kẻ đường thẳng song song vs AD cắt ED tại I
a)Chứng minyh IC// BE
b) chứng minh rằng nếu AD vuông góc vs BE thì tam giác ICF là tam giác vuông
c)So sánh các cạnh của tam giác ICF vs các trung tuyến của tam giác ABC
Cho tam giác ABC có AB < AC và tia phân giác AD. TRên tia AC lấy E sao cho AE = AB
a) CMR: BD = DE
b) Gọi K là giao điểm của đường thẳng AB và ED. CMR: tam giác DBK = tam giác DEC.
c) Tam giác AKC là tam giác gì?
d) CMR: DE vuông góc KC
cho tam giác ABC có góc B bằng 2 lần góc C, AD là đường cao, kẻ tia phân giác của góc ABC cắt AD tại F và AC tại E. Chứng minh: DE/AF = AE/EC
Cho tam giác ABC vuông tại A, có đường cao AH
a) Tam giác ABC đồng dạng với tam giác nào?
b) Biết AB=15cm, AC=20cm. Tính BC, AH, CH, BH
c) Lấy E trên AH. Qua E kẻ đường thẳng song song với BC và cắt AB tại M, AC tại N. Tính S\(_{\Delta AMN}\), S\(\Delta ABC\), \(\frac{S\Delta AMN}{S\Delta ABC}\)
Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân
Gợi ý : Trong ∆ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn AD1 sao cho DA1 = AD
Cho tam giác ABC cân tạ A,kẻ đường cao BE, trên AB lấy D sao cho AE=AD. Gọi H là giao điểm của BE và CD
a) CM: tam giác ABE= tam giác ACD
b) CM: H là trực tâm của ttam giác ABC
c) gọi M là trung điểm của BC, CM 3 điểm A,M,H thẳng hàng
d) Cm: BC=2DM
cho tam giác abc vuông tại a có ab=6cm,ac=8cm. Vẽ đường cao ah.
a)tính bc,ah
b)cm:tam giác hab đồng dạng tam giác hac =>bh.ch=\(ah^2\)
c)trên bc lấy điểm e sao cho ce=4cm.cm:\(be^2=bh.ch\)
d)tia phân giác của góc abc cắt ac tại d.tính\(\Delta_{CED}\)
GIẢI GIÙM MÌNH NHANH NHANH NHE