Cho tam giác \(ABC\) vuông tại \(A\) có \(AB=3a,AC=4a\). Gọi \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{s}\) lần lượt là các véc-tơ có giá vuông góc với các đường thẳng \(AB,AC,BC\). Cho \(\left|\overrightarrow{u}\right|=AB,\left|\overrightarrow{v}\right|=AC,\left|\overrightarrow{s}\right|=BC\). Tính theo \(a\) độ dài của véc-tơ \(\overrightarrow{x}=\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{s}\).
Cho tam giác ABC có AB = 5 Ac =6 góc A = 120 độ. Gọi N là điểm thoả mãn véc tơ NA + véc tơ 2AC = véc tơ 0. Gọi K là điểm trên cạnh BC sao cho véc tơ BK = x nhân véc tơ BC. Tìm x để AK vuông góc BN
Giúppp mình với mình đang cần bài rất gấp!!!
cho tam giác ABC vuông tại A có AB=1, AC=2. Dựng M sao cho AM=3 và AM vuông góc với BC. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}\). Tìm x,y
1) Cho tam giác ABC vuông tại A , cạnh AB= 1 và góc ABC= 60 độ
Tìm tập hợp điểm N thỏa mãn: 4. \(\overrightarrow{NB.}\overrightarrow{NC}\) =11
c) Gọi hai điểm I, J di động trên đường tròn tâm O ngoại tiếp tam giác vuông ABC thỏa mãn: \(\left|4\overrightarrow{OI}+5\overrightarrow{ỌJ}\right|=\dfrac{5}{2}\) Tính cosin của góc IOJ
Trên mặt phẳng tọa độ Oxy cho tam giác ABC có A(1;3) , B(-2;1) và C(0;3).
Vec tơ \(\overrightarrow{AB}+\overrightarrow{AC}\) có tọa độ là
cho tam giác ABC vuông cân tại A, cho BC=2a. Tính \(\overrightarrow{CA}-\overrightarrow{CB}\)
Cho tam giác ABC. Gọi H là trực tâm của tam giác ABC và A' ; B' ; C' lần lượt là chân đường vuông góc hà từ A, B, C lên các cạnh BC, AC, AB. Chứng minh rằng \(B'C'.\overrightarrow{HA'}+C'A'.\overrightarrow{HB'}+A'B'.\overrightarrow{HC'}=\overrightarrow{0}\)
cho các vecto \(\overrightarrow{a};\overrightarrow{b}\)có độ dài bằng 1 và 2 góc giữa 2 vecto bằng 120 độ. Ta lập vecto \(\overrightarrow{c}=3\overrightarrow{a}+4\overrightarrow{b}\). Tính độ dài của vecto \(\overrightarrow{c}\)
Cho ba véc-tơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\)thỏa mãn:
|\(\overrightarrow{a}\)| = 4, |\(\overrightarrow{b}\) |=1, |\(\overrightarrow{c}\)| = 5 và 5(\(\overrightarrow{b}-\overrightarrow{a}\) ) + 3\(\overrightarrow{c}\)=\(\overrightarrow{0}\).
Khi đó biểu thức M = \(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}\) có giá trị là bao nhiêu