Cho tam giác ABC có AB= 5; AC=8, số đo góc A bằng 60o. M,N là 2 điểm xác định bởi 5\(\overrightarrow{AM}\)=\(\overrightarrow{AB}\);4\(\overrightarrow{AN}\)=\(\overrightarrow{AC}\). Chứng minh CM vuông góc BN.
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB=3a,AC=4a\). Gọi \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{s}\) lần lượt là các véc-tơ có giá vuông góc với các đường thẳng \(AB,AC,BC\). Cho \(\left|\overrightarrow{u}\right|=AB,\left|\overrightarrow{v}\right|=AC,\left|\overrightarrow{s}\right|=BC\). Tính theo \(a\) độ dài của véc-tơ \(\overrightarrow{x}=\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{s}\).
Cho tam giác ABC có AB = 5, BC = 6 và AC = 9. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AC = 3NC. Tính tích vô hướng \(\overrightarrow{AM}.\overrightarrow{BN}\).
Cho hình thang ABCD vuông tại A và D có DC=3a, AB=a
Tính độ dài đường cao AD theo a để AC vuông góc vs BD.Khi đó hãy tính \(\overrightarrow{AM}.\overrightarrow{DN}\) với M,N lần lượt là trug diểm của BC và BD
Cho tam giác \(ABC\), trung tuyến \(AM\). Điểm \(E\) bất kì thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EC}=\overrightarrow{0}\). Đường thẳng \(d\) qua \(E\) song song với \(AB\) cắt \(AM,BC\) lần lượt tại \(D,F\). \(G\) nằm trên cạnh \(AB\) sao cho diện tích hai tam giác \(BFG,ADE\) bằng nhau. Biết \(\overrightarrow{AG}=k\overrightarrow{AB}\). Tìm giá trị \(k\).
A. \(k=\dfrac{1}{3}\)
B. \(k=\dfrac{1}{2}\)
C. \(k=\dfrac{1}{4}\)
D. \(k=\dfrac{2}{3}\)
(Giải chi tiết giúp em ạ, em cảm ơn)
Cho hình bình hành ABCD tâm O. Xác định vị trí điểm M thỏa mãn \(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AM}\). Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và dựng điểm K sao cho \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\). Khi đó, điểm K trùng với
Cho tam giác ABC với A(-5,3), B(-2,6), C(2,2)
a)CMR tam giác ABC vuông
b)Tính (2\(\overrightarrow{AB}\)-\(\overrightarrow{AC}\))\(\overrightarrow{BC}\)
Cho hình bình hành \(ABCD\) tâm \(O\). Hai điểm \(M\) và \(N\) lần lượt là hai điểm di động trên hai đường thẳng \(AB,AD\) sao cho \(M,C,N\) thẳng hàng. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AD}\left(x,y\ne0\right)\), tìm biểu thức \(A\) thỏa mãn phương trình \(x+y=A.\)
Cho tam giác ABC . Dựng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\)và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\). tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\)và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm