Cho tam giác ABC với cạnh AB = c , BC=a , CA=b
Gọi I là tâm đường tròn nội tiếp tam giác ABC . CMR \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Cho tam giác ABC. Gọi H là trực tâm của tam giác ABC và A' ; B' ; C' lần lượt là chân đường vuông góc hà từ A, B, C lên các cạnh BC, AC, AB. Chứng minh rằng \(B'C'.\overrightarrow{HA'}+C'A'.\overrightarrow{HB'}+A'B'.\overrightarrow{HC'}=\overrightarrow{0}\)
cho tam giác ABC vuông tại A có AB=1, AC=2. Dựng M sao cho AM=3 và AM vuông góc với BC. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB}+y\overrightarrow{AC}\). Tìm x,y
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB=3a,AC=4a\). Gọi \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{s}\) lần lượt là các véc-tơ có giá vuông góc với các đường thẳng \(AB,AC,BC\). Cho \(\left|\overrightarrow{u}\right|=AB,\left|\overrightarrow{v}\right|=AC,\left|\overrightarrow{s}\right|=BC\). Tính theo \(a\) độ dài của véc-tơ \(\overrightarrow{x}=\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{s}\).
Cho tam giác ABC có các cạnh AB = c, AC = b, BC = a. Tìm điểm M sao
cho vecto a\(\overrightarrow{MA}\) + b\(\overrightarrow{MB}\) + c\(\overrightarrow{MC}\) có độ dài nhỏ nhất?
Cho tam giác ABC; biết AB = 6a,AC = 8a, BC \(4\sqrt{5}a\) . Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) . theo a
Cho tam giác ABC đều cạnh a, trọng tâm G.
a) Tính \(\overrightarrow{BA}-\overrightarrow{BC}\)
b) Tính dộ dài vecto \(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|\)
Cho tam giác ABC có cạnh BC = a, AC = b, AB = c. Tìm vị trí điểm M để:
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}\) đạt giá trị nhỏ nhất.
Trong mp Oxy cho tam giác ABC có A(2;1) , B(-3;-1) , C(4;3). Tọa \(\overrightarrow{u}=2\)\(\overrightarrow{AB}\)-\(\overrightarrow{BC}\)độ là :
A. (-3;0) B. (-17;0) C. (-3;8) D. (-17;-8)