Cho các số phức z thỏa mãn |z|=2và w=1- 3 i+(3-4i)z. Tìm giá trị lớn nhất của |w|
A. 8.
B. 9.
C.10.
D. 12.
Xét các số phức z thỏa mãn z + 1 - i + z - 3 + i = 2 5 . Tìm giá trị nhỏ nhất của P = z + 2 + 4 i .
A. P m i n = 11 5 5
B. P m i n = 2 + 2
C. P m i n = 5
D. P m i n = 5 - 2
Cho số phức z thỏa mãn z - 3 + 4 i = 2 và w = 2z + 1 – i. Trong mặt phẳng phức, tập hợp điểm biểu diễn số phức w là đường tròn tâm I, bán kính R . Khi đó:
A. I (-7;9), R = 16
B. I (-7;9), R = 4
C. I (7;-9), R = 16
D. I (7;-9), R = 4.
Cho số phức z thoả mãn |z-1-i|=1 Khi 3|z|=2|z-4-4i| đạt giá trị lớn nhất. Tính |z|
A. 2 - 1
B. 2
C. 2 + 1
D. 3
Cho số phức z thỏa mãn |z|=1. Biết tập hợp các điểm biểu diễn số phức w=(3-4i)z-1+2i là đường tròn tâm I, bán kính R. Tìm tọa độ tâm I và bán kính R của đường tròn đó
A. I(1;2); R= 5
B. I(1;-2); R=5
C. I(1;2); R=5
D. I(-1;2); R=5
Cho số phức z thỏa mãn |z|=1. Biết tập hợp các điểm biểu diễn số phức w=(3-4i)z-1+2i là đường tròn tâm I, bán kính R. Tìm tọa đọ tâm I và bán kính R của đường tròn đó.
A. I(-1; 2); R = 5
B. I(1; 2); R = 5
C. I(1; 2); R = 5
D. I(-1; 2); R = 5
Cho số phức z thỏa mãn z − 3 + 4 i = 2 và w = 2 z + 1 − i . Khi đó w có giá trị lớn nhất là
A. 4 + 74
B. 2 + 130
C. 4 + 130
D. 16 + 74
Cho số phức z=1+i. Biết rằng tồn tại các số phức z 1 = a + 5 i , z 2 = b (trong đó a , b ∈ R , b > 1 ) thỏa mãn 3 | z - z 1 | = 3 | z - z 2 | = | z 1 - z 2 | . Tính b-a.
A. b - a = 5 3
B. b - a = 2 3
C. b - a = 4 3
D. b - a = 3 3
Cho số phức z = a + b i thỏa mãn z − i ≥ 3, z − 1 ≤ 5 . Tính z 1 , z 2 ∈ T .
A. P=8
B. P=-4
C. P=-8
D. P=4
Cho thỏa mãn z ∈ ℂ thỏa mãn 2 + i z = 10 z + 1 - 2 i . Biết tập hợp các điểm biểu diễn cho số phức w = ( 3 - 4i )z - 1 +2i là đường tròn I, bán kính R. Khi đó
A. I ( -1;-2 ) R = 5
B. I ( 1;2 ), R = 5
C. I ( -1;2 ), R = 5
D. I ( 1;-2 ), R= 5