Xét các số phức z=a+bi z = a + b i ( a , b ∈ R ) thỏa mãn z - 3 + 3 i = 2 . Tính P=a+b khi z - 1 + 3 i + z - 3 + 5 i đạt giá trị lớn nhất
A. 2
B. – 2
C. 8
D. – 8
Xét các số phức z=a+bi (a,b thuộc R) thỏa mãn |z-3-2i|=2. Tính a+b khi |z+1-2i|+2|z-2-5i| đạt giá trị nhỏ nhất
A. 4 - 3
B. 2 + 3
C. 3
D. 4 + 3
Cho số phức z=a+bi a , b ∈ R thỏa mãn z = 5 và z ( 2 + i ) ( 1 - 2 i ) là một số thực. Tính P = a + b .
A. P=5
B. P=7
C. P=8
D. P=4
Cho số phức z = 1 + i . Biết rằng tồn tại các số phức z 1 = a + 5 i , z 2 = b (trong đó a , b ∈ ℝ , b > 1 ) thỏa mãn 3 z − z 1 = 3 z − z 2 = z 1 − z 2 . Tính b − a
A. b − a = 5 3
B. b − a = 2 3
C. b − a = 4 3
D. b − a = 3 3
Cho số phức z = 1 + i. Biết rằng tồn tại các số phức z 1 = a + 5 i , z 2 = b (trong đó a , b ∈ ℝ , b > 1 ) thỏa mãn 3 z - z 1 = 3 z - z 2 = z 1 - z 2 . Tính b - a
A. b - a = 5 3
B. b - a = 2 3
C. b - a = 4 3
D. b - a = 3 3
Xét các số phức z = a + bi, (a,b i) thỏa mãn |z – 3 – 3i| = 6. Tính P = 3a + b khi biểu thức 2|z + 6 – 3i| + |z + 1 + 5i| đạt giá trị nhỏ nhất.
A. P = 20
B. P = 2 + 20
C. P = - 20
D. P = - 2 - 20
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5
Cho số phức z = a + b i a , b ∈ R thỏa mãn z + 1 + i z ¯ - i + 3 i = 9 và z ¯ > 2 . Tính P = a + b
A. -3
B. -1
C. 1
D. 2
Cho số phức z = a + b i ( a , b ∈ R ) thỏa mãn z+2i+i-|z|(1+i)=0 và |z|>1. Tính P=a+b
A. P=-1
B. P=-5
C. P=3
D. P=7