Thay x=-1 vào (P), ta được:
y=-2*(-1)^2=-2
Thay x=-1và y=-2 vào (d), ta được:
-(m+1)-m-3=-2
=>-m-1-m-3=-2
=>-2m-4=-2
=>2m+4=2
=>m=-1
Thay x=-1 vào (P), ta được:
y=-2*(-1)^2=-2
Thay x=-1và y=-2 vào (d), ta được:
-(m+1)-m-3=-2
=>-m-1-m-3=-2
=>-2m-4=-2
=>2m+4=2
=>m=-1
Cho Parabol (P): y = -2x2 và đường thẳng (d): y = x - m (m là tham số)
Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn: x1 + x2 = x1x2
Cho Parabol (P): y = -2x2 và đường thẳng (d): y = x - m (m là tham số)
Tìm tất cả các giá trị tham số m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn điều kiện
x1 + x2 = x1x2
cho đường thẳng (d) y=6x-m+3 (m là tham số) và parabol (p) y=x^2 tìm giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1 x2 thỏa mãn (x1-1)(x2^2-5x2+m-4)=2
Tìm tất cả các giá trị của tham số m để đường thẳng d : y=mx -3 cắt parabol P : y = x^2 tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn |x1 - x2| = 2
Trong mặt phẳng tọa độ Oxy cho parabol ( P):y= \(x^2
\) và đường thẳng
( d) : y= \(2(m+1)x-m^2-2\)(m là tham số)
Tìm các giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x^1,x^2\) sao cho \(x_1^2+x_1x_2+2=3x_1+x_2\)
Cho parabol (P): y = x² và đường thẳng (d): y = 4x - 4m² - 1, với m là tham số
a) Tìm các số thực m để (d) cắt (P) tại hai điểm phân biệt
b) Khi (d) cắt (P) tại hai điểm phân biệt, tìm m để hai giao điểm có hoành độ x1, x2 đều nhận giá trị là số nguyên
Cho parabol (P): \(y=\frac{-1}{4}x^2\)và đường thẳng (d): y=(m+1)x+m^2+3(m là tham số).Tìm tất cả các giá trị của m để đường thẳng (d) và parabol (P) không có điểm chung
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
Cho phương trình d: y = (m + 1)x - m ( m là tham số) và Parabol (P): y = 1/2 x2
1) Tìm m để đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2.
2) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn căn x1 + căn x2 = căn 2