PTHĐGĐ là:
x^2-(m+2)x+2m=0
Δ=(m+2)^2-4*2m
=m^2+4m+4-8m
=m^2-4m+4
=(m-2)^2
Để PT có hai nghiệm phân biệt thì Δ>0
=>m-2<>0
=>m<>2
P=y1+y2-x1x2
=x1^2+x2^2-x1x2
=(x1+x2)^2-3x1x2
=(m+2)^2-3*2m
=m^2+4m+4-6m
=m^2-2m+1+3
=(m-1)^2+3>=3
Dấu = xảy ra khi m=1
PTHĐGĐ là:
x^2-(m+2)x+2m=0
Δ=(m+2)^2-4*2m
=m^2+4m+4-8m
=m^2-4m+4
=(m-2)^2
Để PT có hai nghiệm phân biệt thì Δ>0
=>m-2<>0
=>m<>2
P=y1+y2-x1x2
=x1^2+x2^2-x1x2
=(x1+x2)^2-3x1x2
=(m+2)^2-3*2m
=m^2+4m+4-6m
=m^2-2m+1+3
=(m-1)^2+3>=3
Dấu = xảy ra khi m=1
Trong mặt phẳng với hệ tọa độ Oxy Cho parabol p : y = 1/2x bình và đường thẳng d :y =( 2 m + 1) x - 2m bình - 2 m + 4( m là tham số thực )
a/ vẽ đồ thị hàm số P và d trên cùng một tọa độ khi m = 0
b/ tìm các giá trị của m để d cắt P tại 2 điểm phân biệt M (x1;y2) , N (x2;y2) sao cho biểu thức T = 2( y 1 + y2) - 3( x1 + x2 )- x1x2 đạt giá trị nhỏ nhất
Cho Parabol (P: y=x^2 và (d): y= 3x+ m^2 *-1 (với m là tham số) đường thẳngTìm tất cả các giá trị của tham số m để đường thẳng cắt Parabol tại hai điểm phân biệt A(x1 ,y1) B (x2, y2) sao cho x1,y1 thỏa mãn |x1|+2 |x2| = 3 : .
Cho Parabol(P) : y=x² và đường thăng (d) : y=(2m-1)x-m+2 ( m là tham số)
A) c)m rằng với mới m đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt
B)Tìm các giá trị m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt A(x1;y1);B(x2;y2) thoả mãn x1y1+x2y2=0
cho đường thẳng (d):y=-mx+m+2 và parabol (p):y=x^2 a,Tìm tọa độ giao điểm của (d)và(p) khi m=2 b, Tìm các giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1;x2 sao cho x1^2+x2^2=7
Cho Parabol (P): y = -2x2 và đường thẳng (d): y = x - m (m là tham số)
Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn: x1 + x2 = x1x2
Tìm tất cả các giá trị của tham số m sao cho parabol (P): y = x2 cắt đường thẳng d: y = mx – 2 tại 2 điểm phân biệt A(x1;y1) và B(x2;y2) thỏa mãn y 1 + y 2 = 2 ( x 1 + x 2 ) − 1
Cho parabol -3x2 cắt đường thẳng y=x-2 tại hai điểm P(x1;y1),Q(x2;y2).Giá trị của biểu thức x1x2+\(\dfrac{1}{2}\)y1y2 là
A.\(\dfrac{4}{3}\) B.\(\dfrac{8}{3}\) C.0 D.\(\dfrac{-4}{3}\)
Cho parabol (P): y = x 2 và đường thẳng (d): y = mx + 1. Gọi A ( x 1 ; y 1 ) và B ( x 2 ; y 2 ) là các giao điểm của (d) và (P). Tìm m để biểu thức M = ( y 1 − 1 ) ( y 2 − 1 ) đạt giá trị lớn nhất.
A. m = 0
B. m = 2
C. m = 1
D. m = −1
chứng minh rằng với mọi giá trị của tham số m thì đường thẳng (d) : y = mx +1 luôn cắt Parabol (P) : y = x^2 tại hai điểm phân biệt. khi đó tìm m để y1 + y2 +y1*y2 = 7, với y1 , y2 là tung đọ của các giao điểm .