1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
Cho parabol (P) y=-x^2 và đường thẳng (d) y=mx-1
a) Với mọi giá trị của m, đường thẳng (d) luôn cắt Parabol (P) tại 2 điểm phân biệt A và B
b) Gọi Xa, Xb lần lượt là hoành độ giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để X^2aXb + x^2bXa-XaXb=3
Trong mặt phẳng với hệ tọa độ Oxy Cho parabol p : y = 1/2x bình và đường thẳng d :y =( 2 m + 1) x - 2m bình - 2 m + 4( m là tham số thực )
a/ vẽ đồ thị hàm số P và d trên cùng một tọa độ khi m = 0
b/ tìm các giá trị của m để d cắt P tại 2 điểm phân biệt M (x1;y2) , N (x2;y2) sao cho biểu thức T = 2( y 1 + y2) - 3( x1 + x2 )- x1x2 đạt giá trị nhỏ nhất
BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P
BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P
Cho Parabol (P) y=1/4 x^2 và đường thẳng (d) y=mx+1.
a, chứng minh với mọi giá trị của m đường thẳng (d) luôn cứt Parabol (P) tại hải điểm phân biệt.
b, Gọi A,B là giao điểm của (d) và (P). Tính diện tích OBA theo m (O là tung độ gốc)
Cho parabol (P): y = -x^2 và đường thẳng (d): y = mx + 2
a)tìm m để (d) cắt (P) tại 1 điểm duy nhất
b)Cho 2 điểm A(-2,m) và B(1,m).Tìm m,n để A thuộc (P) và B thuộc (d)
Cho parabol; y=1/2x2 và đường thẳng y=mx-1/2m2 cộng m cộng 1
a] Với m=1,xác định tọa độ giao điểm của d và P
b Tìm các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ x1,x2 sao cho /x2-y2/ =2
Cho parabol (P) : y=x và đường thẳng ( d ): y=mx-2 ( m là tham số m khác 0). Gọi A ( x1, y1) . B ( x2, y2) là 2 giao điểm của P và d . Tìm m sao cho : y1 + y2 = 2( x1 + x2 ) -1