Cho nửa đường tròn tâm O bán kính R, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ ba với đường tròn, tiếp tuyến này cắt Ax và By lần lượt tại C và D.
a) Chứng minh OC vuông góc AM và AM song song OD
b) chứng minh AC.BD = R^2
c) Chứng minh AB là tiếp tuyến đường tròn đường kính CD
d) Gọi K là giao điểm của AD và BC. Chứng minh MK vuông góc AB
cho nửa đường tròn tâm O,đường kính AB.Vẽ các tiếp tuyến Ax,By với nửa đường tròn cùng phía đối với AB.Từ điểm M trên nửa đường tròn(M khác A,B) vẽ tiếp tuyến với nửa đường tròn,cắt Ax và By lần lượt tại C và D
a,CHứng minh tam giác COD đồng dạng tam giác AMB
b,Chứng minh MC.MD không đổi khi M di động trên nửa đường tròn
c,Cho OC=BA=2R.Tính AC và BD theo R
Bài 2: Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn, nó cắt Ax và By lần lượt tại C và D.
a/ Chứng minh: Tam giác COD là tam giác vuông.
b/ Chứng minh: MC.MD=OM2.
c/ Cho biết OC=BA=2R, tính AC và BD theo R.
giup minh voi ah
Cho nửa đường tròn tâm O đường kính AB, kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với đường thẳng AB. Lấy E là một điểm thuộc nửa đường tròn ( E khác A, khác B). Tiếp tuyến của nửa đường tròn tại E cắt Ax, By lần lượt tại C, D. Gọi I là giao điểm của OC và AE. K là giao điểm của OD và BE. Xác định vị trí của E trên nửa đường tròn sao cho diện tích tứ giác EIOK lớn nhất.
Làm chi tiết với ạ ( Vẽ hình luôn )
Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax, By với nửa đường tròn cùng phía đối với AB. Từ điểm M trên nửa đường tròn (M khác A, B) vẽ tiếp tuyên với nửa đường tròn, cắt Ax và By lần lượt tại C và D . Khi đó MC . MD bằng
A.OC\(^2\) B.OM\(^2\) C.OD\(^2\) D.OM
Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. từ điểm M trên nữa đường tròn kẻ tiếp tuyến thứ 3 với đường tròn , nó cắt à , By tại C, D .Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C và D.
a)Chứng minh rằng: tam giác COB là tam giác vuông
b)Chứng minh MC * MD=OM^2
c)gọi y là trung điểm của CD chứng minh AB là tiếp tuyến
Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H.
a) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax,By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M,I,H thẳng hàng.
b) Vẽ đường tròn tâm (O') nội tiếp tam giác AMB tiếp xúc với AB ở K. Chứng minh SAMB= AK.KB
Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ các tiếp tuyến Ax, By với (O) (Ax, By nằm cùng phía đối với nửa đường tròn (O)). Gọi M là 1 điểm trên đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax, By thứ tự ở C và D. Chứng minh rằng: 1) Chứng minh Góc COD bằng 90° 2) Chứng minh 4 điểm B, D, M, O thuộc 1 đường tròn 3) Chứng minh CD = AC + BD 4) Chứng minh Tích AC.BD không đổi khi M chuyển động trên nửa đường tròn (O) 5) Chứng minh AB là tiếp tuyến đường tròn đường kính CD 6) Gọi N là giao điểm của AD và BC. Chứng minh: MN // AC
Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường
tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn, nó cắt Ax và By lần
lượt tại C và D.
a/ Chứng minh: Tam giác COD là tam giác vuông.
b/ Chứng minh: MC.MD=\(OM^2\).
c/ Cho biết OC=BA=2R, tính AC và BD theo R.