Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Phươngk9

cho nửa đường tròn tâm O,đường kính AB.Vẽ các tiếp tuyến Ax,By với nửa đường tròn cùng phía đối với AB.Từ điểm M trên nửa đường tròn(M khác A,B) vẽ tiếp tuyến với nửa đường tròn,cắt Ax và By lần lượt tại C và D

a,CHứng minh tam giác COD đồng dạng tam giác AMB

b,Chứng minh MC.MD không đổi khi M di động trên nửa đường tròn

c,Cho OC=BA=2R.Tính AC và BD theo R

Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 22:25

a: Xét (O) có

CM,CA là tiếp tuyến

DO đó: CM=CA  và OC là phân giác của góc AOM

=>C nằm trên đường trung trực của MA(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của MA(2)

từ (1) và (2) suy ra CO là đường trung trực của MA

OC là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

DM=DB

nên D nằm trên đường trung trực của BM(3)

OM=OB

=>O nằm trên đường trung trực của BM(4)

Từ (3) và (4) suy ra OD là là đường trung trực của BM

Ta có: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét tứ giác OACM có

\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)

=>OACM là tứ giác nội tiếp

=>\(\widehat{OAM}=\widehat{OCM}\)

Xét ΔCOD vuông tại O và ΔAMB vuông tại M có

\(\widehat{OCD}=\widehat{MAB}\)(cmt)

Do đó: ΔCOD đồng dạng với ΔAMB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

=>\(MC\cdot MD=R^2\) không đổi khi M di chuyển trên (O)

c: AB=2R

=>OA=OB=AB/2=R

Ta có: ΔCAO vuông tại A

=>\(CA^2+AO^2=CO^2\)

=>\(CA^2+R^2=\left(2R\right)^2\)

=>\(CA^2=3R^2\)

=>\(CA=R\sqrt{3}\)

\(MC\cdot MD=R^2\)

mà MC=AC và DM=DB

nên \(AC\cdot BD=R^2\)

=>\(BD\cdot R\sqrt{3}=R^2\)

=>\(BD=\dfrac{R}{\sqrt{3}}\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Hồng Trần
Xem chi tiết
My Phan
Xem chi tiết
LuKenz
Xem chi tiết
trannnn
Xem chi tiết
Nguyễn Phi Hòa
Xem chi tiết
LuKenz
Xem chi tiết
Thịnh Lê
Xem chi tiết
Ngọc Ánh
Xem chi tiết