Cho mặt cầu S O ; R và mặt phẳng α . Biết khoảng cách từ O tới α bằng d. Nếu d < R thì giao tuyến của mặt phẳng α với mặt cầu S O ; R là đường tròn có bán kính bằng
A. R 2 + d 2
B. R 2 - 2 d 2
C. R 2 - d 2
D. R d
Cho mặt cầu tâm O, bán kính R=3. Mặt phẳng α cách tâm O của mặt cầu một khoảng bằng 1, cắt mặt cầu theo một đường tròn. Diện tích đường tròn bằng bao nhiêu
A. 4 π
B. 6 π
C. 8 π
D. 10 π
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R=6cm. I, K là 2 điểm trên đoạn OA sao cho OI=IK=KA. Các mặt phẳng (α), (b) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính r 1 , r 2 . Tính tỉ số r 1 r 2
A. r 1 r 2 = 4 10
B. r 1 r 2 = 5 3 10
C. r 1 r 2 = 3 10 4
D. r 1 r 2 = 3 10 5
Cho mặt cầu S : x - 3 2 + y + 2 2 + z - 1 2 = 100 và mặt phẳng α : 2 x - 2 y - z + 9 = 0 . Mặt phẳng α cắt mặt cầu (S) theo một đường tròn (C). Tìm tọa độ tâm J và bán kính r của đường tròn (C).
A. J(-1;2;3), r = 8
B. J(-1;2;3), r = 64
C. J(3;2;1), r = 64
D. J(3;2;1), r = 8
Trong không gian Oxyz cho hai mặt phẳng P : x - y + 2 z + 1 = 0 và Q : 2 x + y + z - 1 = 0 . Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2, (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa mãn yêu cầu.
A. r = 3
B. r = 3 2
C. r = 2
D. r = 3 2 2
Trong không gian Oxyz cho các mặt phẳng P : x − y + 2 z + 1 = 0 , Q : 2 x + y + z − 1 = 0 Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3 .
B. r = 2 .
C. r = 3 2 .
D. r = 3 2 2 .
Trong không gian Oxyz cho các mặt phẳng (P): x-y+2z+1 = 0,(Q):2x+y+z-1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3
B. r = 2
C. r = 3 2
D. r = 3 2 2
Cho mặt phẳng (P) cắt mặt cầu S(I;R) theo giao tuyến là đường tròn có bán kính r = 3 cmhoảng cách từ I đến (P) bằng 2cm. Diện tích mặt cầu S(I;R) bằng
A. 52 π cm 2
B. 13 π cm 2
C. 4 13 π cm 2
D. 4 5 π cm 2
Cho mặt cầu (S) tâm O, bán kính R. Xét mặt phẳng (P) thay đổi cắt mặt cầu theo giao tuyến là đường tròn (C). Hình trụ (T) nội tiếp mặt cầu (S) có một đáy là đường tròn (C) và có chiều cao là h ( h > 0 ) . Tính h để khối trụ (T) có giá trị lớn nhất
A. h = 2 R 3
B. h = 2 R 3 3
C. h = R 3
D. h = R 3 3