Cho hình trụ thiết diện qua trục hoành là hình vuông ABCD cạnh 4 3 cm với AB là đường kính của đường tròn đáy tâm O. Gọi M là điểm thuộc cung AB sao cho ABM = ^ 60 o . Tính thể tích của khối tứ diện ACDM
A. 6 cm 3
B. 24 cm 3
C. 3 cm 3
D. 8 cm 3
Cho khối trụ có chiều cao h =16 và hai đáy là hình tròn tâm O, O ' với bán kính R =12. Gọi I là trung điểm của OO' và AB là một dây cung của đường tròn (O) sao cho A B = 12 3 . Tính diện tích thiết diện của khối trụ với mặt phẳng I A B .
A. 120 3 + 80 π
B. 48 π + 24 3
C. 60 3 + 40 π
D. 120 3
Cho hình nón (N) có đường cao SO=h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt O M = x , 0 < x < h . C là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
A. h/2
B. h 2 2
C. h 3 2
D. h/3
Một khối gỗ hình trụ với bán kính đáy bằng 6 và chiều cao bằng 8. Trên một đường tròn đáy nào đó ta lấy hai điểm A,B sao cho cung A B có số đo 120 ° . Người ta cắt khúc gỗ bởi một mặt phẳng đi qua A, B và tâm của hình trụ (tâm của hình trụ là trung điểm của đoạn nối tâm hai đáy) để được thiết diện như hình vẽ. Tính diện tích S của thiết diện thu được.
A. S = 20 π +30 3
B. S = 20 π +25 3
C. S = 12 π +18 3
D. S = 20 π
Cho hình nón đỉnh S, chiều cao SO=h, bán kính đáy bằng R. Gọi M là điểm nằm trên đoạn SO , đặtOM=x (0<x<h) Cắt hình nón bằng mặt phẳng (P) đi qua M và vuông góc với SO, thiết diện thu được là đường tròn (C). Tìm x để thể tích của khối nón đỉnh O đáy là hình tròn giới hạn bởi (C) đạt giá trị lớn nhất
A. x = h 2
B. x = h 3
C. x = h 4
D. x = h 5
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h). (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Giá trị x theo h để thể tích khối nón đỉnh O đáy là (C) lớn nhất là:
A. x = h 2
B. x = h 2 2
C. x = h 3 2
D. x = h 3
Cho hình lập phương ABCD.A′B′C′D′. Gọi O,O′ lần lượt là tâm của hai hình vuông ABCD và A′B′C′D′. Gọi V 1 là thể tích của khối trụ tròn xoay có đáy là 2 đường tròn ngoại tiếp hình vuông ABCD và A′B′C′D′, V 2 là thể tích khối nón tròn xoay đỉnh O và có đáy là đường tròn nội tiếp hình vuông A′B′C′D′. Tỷ số thể tích V 1 V 2 là
A. 6
B. 2
C. 8
D. 4
Cho hình trụ có các đáy là hai hình tròn tâm O và O’, bán kính đáy bằng a, chiều cao bằng a 2 . Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O’ lấy điểm O' sao cho AB' = 2a. Tính thể tích của khối tứ diện OO′B′A.
A. a 3 3 2
B. a 3 2 12
C. a 3 2 6
D. a 3 6
Một hình trụ có bán kính r và chiều cao h = r√3.
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) TÍnh thể tích khối trụ tạo nên bởi hình trụ đã cho.
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng 300. TÍnh khoảng cách giữa đường thẳng AB và trục của hình trụ