Cho hình hộp ABCD.A’B’C’D’ đáy ABCD là hình thoi cạnh a, góc B A D ^ = 60 ° . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) là điểm H thuộc AB thỏa mãn A H = B H 2 và góc giữa đường thẳng AA’ hợp với mặt phẳng (ABCD) một góc bằng 30 ° . Thể tích khối hộp ABCD.A’B’C’D’ là
A. a 3 2
B. 3 a 3 2
C. a 3 6
D. a 3 2 6
Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai mặt phẳng (ABCD) và (A’B’C’D’) bằng
A. 45 ° .
B. 60 ° .
C. 0 ° .
D. 90 ° .
Cho khối lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình vuông. Hình chiếu vuông góc của A trên mặt phẳng (ABCD) là trung điểm của AB, góc giữa mặt phẳng (A’CD) và mặt phẳng (ABCD) là 60°. Thể tích khối chóp B’.ABCD là 8 3 a 3 2 . Tính độ dài đoạn thẳng AC theo a
A. 2 a 3 3
B. 2 2 a 3 3
C. 2 a
D. 2 2 a
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Điểm M thuộc tia DD’ thỏa mãn D M = a 6 . Góc giữa đường thẳng BM và mặt phẳng (ABCD) là
A. 30 o
B. 45 o
C. 75 o
D. 60 o
Cho lăng trụ ABCD.A’B’C’D’ với đáy ABCD là hình thoi, A C = 2 a , B A D ^ = 120 ∘ Hình chiếu vuông góc của điểm B trên mặt phẳng (A’B’C’D’) là trung điểm cạnh A’B’ góc giữa mặt phẳng (AC’D’) với mặt đáy là 60 độ. Tính thể tích V của lăng trụ ABCD.A’B’C’D’
A. V = 2 a 3 3
B. V = 3 a 3 3
C. V = a 3 3
D. V = 6 a 3 3
Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai mặt phẳng ( A’B’CD) và (ABC’D’) bằng
A. 30 0
B. 60 0
C. 45 0
D. 90 0
Cho hình hộp ABCD.A’B’C’D’ có AB=A,B'C'= a 5 các đường thẳng A’B và B’C cùng tạo với mặt phẳng (ABCD) một góc 45 ° tam giác A’AB vuông tại B, tam giác A’CD vuông tại D. Tính thể tích của khối hộp ABCD.A’B’C’D’ theo a
A. 2 a 3
B. 2 a 3 3
C. a 3 6 2
D. a 3 6 6
Cho hình lập phương ABCD . A ’ B ’ C ’ D ’ có cạnh bằng a. Số đo của góc giữa hai mặt phẳng (BA’C) và (DA’C) là
A. 90 o
B. 60 o
C. 30 o
D. 45 o
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Các điểm M, N, P lần lượt thuộc các đường thẳng AA’,BB’,CC’ thỏa mãn diện tích của tam giác MNP bằng a 2 . Góc giữa hai mặt phẳng (MNP) và (ABCD) là
A. 60 o
B. 30 o
C. 45 o
D. 120 o