Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh , BD = 3a, hình chiếu vuông góc của B lên mặt phẳng (A’B’C’D’) là trung điểm của A’C’. biết rằng côsin của góc tạo bởi hai mặt phẳng (ABCD) và (CDD’C’) bằng 21 7 . Tính theo a thể tích khối hộp ABCD.A’B’C’D’
A. 9 a 3 4
B. a 3
C. 9 a 3 2
D. 3 a 3 2
Cho lăng trụ ABCD.A’B’C’D’ với đáy ABCD là hình thoi, A C = 2 a , B A D ^ = 120 ∘ Hình chiếu vuông góc của điểm B trên mặt phẳng (A’B’C’D’) là trung điểm cạnh A’B’ góc giữa mặt phẳng (AC’D’) với mặt đáy là 60 độ. Tính thể tích V của lăng trụ ABCD.A’B’C’D’
A. V = 2 a 3 3
B. V = 3 a 3 3
C. V = a 3 3
D. V = 6 a 3 3
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có A B = B C = 1 2 A A ' Gọi O,O’ lần lượt là tâm hai đáy ABCD và A’B’C’D’, M là điểm thỏa mãn M O → = - 1 2 M O ' → Giá trị tan góc giữa hai mặt phẳng (MAB) và (MAD) bằng
A. 3
B. 6 3
C. 3 3
D. 4 3 3
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a 3 , hình chiếu vuông góc của B lên mặt phẳng (A’B’C’D’) là trung điểm của A’C’. Biết rằng côsin của góc tạo bởi hai mặt phẳng (ABCD) và (CDD’C’) bằng 21 7 . Tính theo a bán kính mặt cầu ngoại tiếp tứ diện A’BC’D’.
A. a
B. 2a
C. 3a
D. a 2
Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai mặt phẳng ( A’B’CD) và (ABC’D’) bằng
A. 30 0
B. 60 0
C. 45 0
D. 90 0
Cho hình lập phương ABCD.A’B’C’D’. Tính góc giữa mặt phẳng (ABCD) và (ACC’A’).
A. 45 ο
B. 60 ο
C. 30 ∘
D. 90 ∘
Cho hình hộp ABCD.A’B’C’D’ có thể tích bằng 2 2 a 3 đáy ABCD là hình thoi cạnh a và B A D ^ = 45 ° . Khoảng cách giữa hai đáy ABCD và A’B’C’D’ của hình hộp bằng
A. 4a
B. 2a
C. 2 2 a
D. 4 2 a
Cho hình lập phương ABCD . A ’ B ’ C ’ D ’ có cạnh bằng a. Số đo của góc giữa hai mặt phẳng (BA’C) và (DA’C) là
A. 90 o
B. 60 o
C. 30 o
D. 45 o
Cho hình hộp ABCD.A’B’C’D’ đáy ABCD là hình thoi cạnh a, góc B A D ^ = 60 ° . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) là điểm H thuộc AB thỏa mãn A H = B H 2 và góc giữa đường thẳng AA’ hợp với mặt phẳng (ABCD) một góc bằng 30 ° . Thể tích khối hộp ABCD.A’B’C’D’ là
A. a 3 2
B. 3 a 3 2
C. a 3 6
D. a 3 2 6