Cho hình hộp ABCD.A’B’C’D’ đáy ABCD là hình thoi cạnh a, góc B A D ^ = 60 ° . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) là điểm H thuộc AB thỏa mãn A H = B H 2 và góc giữa đường thẳng AA’ hợp với mặt phẳng (ABCD) một góc bằng 30 ° . Thể tích khối hộp ABCD.A’B’C’D’ là
A. a 3 2
B. 3 a 3 2
C. a 3 6
D. a 3 2 6
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Các điểm M, N, P lần lượt thuộc các đường thẳng AA’,BB’,CC’ thỏa mãn diện tích của tam giác MNP bằng a 2 . Góc giữa hai mặt phẳng (MNP) và (ABCD) là
A. 60 o
B. 30 o
C. 45 o
D. 120 o
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a tâm O. Gọi M, N lần lượt là trung điểm của SA và BC. Góc giữa đường thẳng MN và mặt phẳng (ABCD) bằng 60 ° . Tính cosin góc giữa đường thẳng và mặt phẳng (SBD)
A. 41 41
B. 5 5
C. 2 5 5
D. 2 41 41
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có A B = B C = 1 2 A A ' Gọi O,O’ lần lượt là tâm hai đáy ABCD và A’B’C’D’, M là điểm thỏa mãn M O → = - 1 2 M O ' → Giá trị tan góc giữa hai mặt phẳng (MAB) và (MAD) bằng
A. 3
B. 6 3
C. 3 3
D. 4 3 3
Cho hình vuông ABCD cạnh a tâm O. Dựng đường thẳng D qua O và vuông góc với mặt phẳng (ABCD). Trên đường thẳng lấy hai điểm S và S’ đối xứng nhau qua O sao cho SA = S’A = a. Cosin góc giữa hai mặt phẳng (SAB) và (S’AB) bằng:
A. 4 9
B. 0
C. 1 3
D. - 1 3
Cho hình vuông ABCD cạnh a tâm O. Dựng đường thẳng ∆ qua O và vuông góc với mặt phẳng (ABCD). Trên đường thẳng ∆ lấy hai điểm S và S' đối xúng nhau qua O sao cho S A = S A ; = a . Cosin góc giữa hai mặt phẳng S A B và ( S ' A B ) bằng
A. 4 9 .
B. 0.
C. 1 3
D. - 1 3 .
Cho hình vuông ABCD cạnh a tâm O. Dựng đường thẳng ∆ qua O và vuông góc với mặt phẳng (ABCD). Trên đường thẳng ∆ lấy hai điểm S và S’ đối xứng nhau qua O sao cho SA = S’A = a. Cosin góc giữa hai mặt phẳng (SAB) và (S’AB) bằng:
A. 4 9
B. 0
C. - 1 3
D. 1 3
Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Chân đường cao hạ từ B’ trùng với tâm O của đáy ABCD; góc giữa mặt phẳng (BB'C’C) với đáy bằng 600. Thể tích lăng trụ bằng:
A. 3 a 3 3 8
B. 2 a 3 3 9
C. 3 a 3 2 8
D. 3 a 3 4
Cho mặt cầu tâm O và tam giác ABC có ba đỉnh nằm trên mặt cầu với góc ∠ B A C = 30 0 và BA = a. Gọi S là điểm nằm trên mặt cầu, không thuộc mặt phẳng (ABC) và thỏa mãn SA = SB = SC, góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 60 ° . Tính thể tích V của khối cầu tâm O theo a.
A. V = 3 9 . π a 3
B. V = 32 3 27 . π a 3
C. V = 4 3 27 . π a 3
D. V = 15 3 27 . π a 3