a) Xét \(\Delta ABC\) và \(\Delta BHC\) có:
\(\widehat{ABC}=\widehat{BHC}=90^0\);
\(\widehat{ACB}\) chung
\(\Rightarrow\Delta ABC\sim\Delta BHC\) (g.g)
b) Xét \(\Delta ABH\) và \(\Delta ACB\) có:
\(\widehat{ABC}=\widehat{AHB}=90^0\);
\(\widehat{BAC}\) chung
\(\Rightarrow\Delta ABH\sim\Delta ACB\) (g.g) \(\Rightarrow\dfrac{AB}{HB}=\dfrac{AC}{AB}\Rightarrow AB^2=AC.HB\)
c) Áp dụng định lý Pytago ta có:
\(AC^2=AB^2+BC^2=16^2+12^2=400\Rightarrow AC=20\left(cm\right)\)
Theo câu b ta có: \(AB^2=AC.HB\)
\(\Rightarrow HB=\dfrac{AB^2}{AC}=\dfrac{16^2}{20}=12,8\left(cm\right)\)