Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.

a) Chứng minh AC ⊥ SD

b) Chứng minh MN ⊥ (SBD)

c) Cho AB = SA = a. Tính coossin của góc giữa (SBC) và (ABCD)

Cao Minh Tâm
6 tháng 9 2018 lúc 2:15

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (AC ⊥ SH & AC ⊥ BD ⇒ AC ⊥ (SBD) ⇒ AC ⊥ SD.

b) (MN//AC & AC ⊥ (SBD) ⇒ MN ⊥ (SBD).

c) + Xác định góc α giữa (SBC) và (ABCD)

Gọi I là trung điểm của BC, ta có:

(BC ⊥ IH & BC ⊥ SH ⇒ BC ⊥ (SIH)

⇒ BC ⊥ SI.

⇒ [((SBC),(ABCD)) ] = ∠(SIH) = α.

+ Tính α:

Trong tam giác SIH, ta có: cosα = IH/IS = √3/3 ⇒ α = arccos√3/3.


Các câu hỏi tương tự
Azaki
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Ngoc Nguyen
Xem chi tiết
Quanglee
Xem chi tiết
Pham Trong Bach
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
Ma Thị Thuỷ
Xem chi tiết
Trần quang hải
Xem chi tiết