Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).
Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)
\(AN=\sqrt{AB^2-BN^2}\) \(=\) \(\sqrt{\left(3a\right)^2-\left(\dfrac{3a}{2}\right)^2}\) \(=\) \(\dfrac{3a\sqrt{3}}{2}\)
Vậy khoảng cách từ S đến (ABC ) là a.