Cho hình chóp S.ABCD có đáy là hình vuông cạnh a.
SA vuông góc với mặt phẳng (ABCD) và S A = a 6 (xem hình
vẽ). Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAC).
Tính sin α ta được kết quả là
A . 1 14
B . 2 2
C . 3 2
D . 1 5
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng A B C D v à S A = a 6 . Gọi a là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sin α ta được kết quả là:
A. 1 14
B. 2 2
C. 3 2
D. 1 5
Cho hình chóp S.ABCD có đáy là hình vuông cạnh SA = a, vuông góc với mặt phẳng (ABCD) và SA = a 6 . Gọi a là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sin α ta được kết quả là
A. 1 14
B. 2 2
C. 3 2
D. 1 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α , với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng S B C .
A. sin α = 7 8
B. sin α = 3 2
C. sin α = 2 4
D. sin α = 3 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M, N lần lượt là trung điểm của cạnh SA, CD và α là góc giữa đường thẳng MN và mặt phẳng (SBD). Khi đó sin α bằng
A. 224 21
B. 14 42
C. 2 14 21
D. 14 21
Cho hình chóp S.ABCD có ABCD là hình bình hành, A B = 2 a , B C = a , A B C = 120 0 . Cạnh bên S D = a 3 và SD vuông góc với mặt phẳng đáy (tham khảo hình vẽ bên). Tính sin của góc tạo bởi SB và mặt phẳng (SAC).
A. 3 4
B. 3 4
C. 1 4
D. 3 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hình chiếu vuông góc của đỉnh S xuống mặt đáy nằm trong hình vuông ABCD. Hai mặt phẳng (SAD), (SBC) vuông góc với nhau; góc giữa hai mặt phẳng S A B v à S A C là 60 ° ; góc giữa hai mặt phẳng S A B v à S A D là 45 ° Gọi α là góc giữa hai mặt phẳng S A B v à A B C D , tính cos α
A. cos α = 1 2
B. cos α = 2 2
C. cos α = 3 2
D. cos α = 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA =2a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tang của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng
A. 5 5
B. 3 2
C. 2 5 5
D. 2 3 3
Cho hình chóp S.ABCD đáy ABCD là hình thang cân, A D = a , A B = a , B C = a , C D = 2 a . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và SD. Tính cosin góc giữa MN và (SAC) biết thể tích khối chóp S.ABCD bằng a 3 3 4
A. 310 20
B. 3 5 10
C. 3 310 20
D. 5 10