Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=2a và vuông góc với đáy. Gọi M, N lần lượt là trung điểm của CD và SA. Tính sin góc tạo bởi đường thẳng MN và mặt phẳng (SBD).
A. 2/3.
B. 4/9.
C. 1/3.
D. 1/9.
Cho hình chóp S.ABCD có đáy là hình thang vuông tại B. AB=BC=a, AD=2a. Biết SA vuông góc với đáy (ABCD) và SA=a. Gọi M,N lần lượt là trung điểm SB,CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC)
A. 5 5
B. 55 10
C. 3 5 10
D. 2 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy và S A = 2 a . Góc giữa đường thẳng SC và mặt phẳng (ABCD) là α . Khi đó t a n α bằng:
A. 2
B. 2 3
C. 2
D. 2 2
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và α là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng với hình chóp S.ABCD là
A. S = a 2
B. S = 3 a 2 2
C. S = a 2 2
D. S = 2 a 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a , AD=2a Cạnh bên SA vuông góc với đáy (ABCD), SA=2a Tính tan của góc giữa hai ămtj phẳng (SBD) và (ABCD)
A. 1 5
B. 2 5
C. 5
D. 5 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = a , A D = 2 a . Cạnh bên SA vuông góc với mặt phẳng đáy và cạnh bên SC tạo với đáy một góc 60 ° . Gọi M, N là trung điểm các cạnh bên SA và SB. Khoảng cách từ điểm S đến mặt phẳng (DMN) bằng
A. 2 a 465 31
B. a 31 60
C. a 60 31
D. 2 a 5 31
Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, AD = 3a, BC = CD = 4a; cạnh bên SA vuông góc với đáy và S A = a 3 . Gọi M là điểm nằm trên cạnh AD sao cho AM = a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó cosα bằng
A. 5 5
B. 6 3
C. 2 3
D. 6 6
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD, α là góc giữa đường thẳng MN và S A C . Giá trị tan α là
A. 6 3
B. 6 2
C. 3 2
D. 2 3
Cho hình chóp SABCD có đáy là hình chữ nhật A B = 2 a , A D = 2 a , SA vuông góc với đáy và S A = 2 a Gọi M và N lần lượt là trung điểm của SB và AD( tham khảo hình vẽ). Côsin góc giữa đường thẳng MN và mặt phẳng (SAC) bằng
A. 1 3
B. 3 3
C. 6 3
D. 3 6