Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hình chiếu vuông góc của đỉnh S xuống mặt đáy nằm trong hình vuông ABCD. Hai mặt phẳng (SAD), (SBC) vuông góc với nhau; góc giữa hai mặt phẳng S A B v à S A C là 60 ° ; góc giữa hai mặt phẳng S A B v à S A D là 45 ° Gọi α là góc giữa hai mặt phẳng S A B v à A B C D , tính cos α
A. cos α = 1 2
B. cos α = 2 2
C. cos α = 3 2
D. cos α = 2 3
Một hình chóp tam giác đều S.ABC có AB=a cạnh bên SA tạo với đáy một góc 30 ° . Một hình nón có đỉnh S, đáy là hình tròn ngoại tiếp tam giác ABC. Tính số đo góc ở đỉnh α của hình nón đã cho
A. 120 °
B. 60 °
C. 150 °
D. 30 °
Cho khối chóp tứ giác đều S.ABCD có thể tích bằng a 3 và đáy ABCD là hình vuông cạnh a. Tính cosα với α là góc giữa mặt bên và mặt đáy
A. cos α = 1 5
B. cos α = 1 3
C. cos α = 1 37
D. cos α = 1 19
Cho hình hộp chữ nhật A B C D . A ' B ' C ' D ' có đáy là hình chũ nhật , AB = a, AD = 2, hình chiếu vuông góc của điểm A trên mặt phẳng A ' B ' C ' D ' là trung điểm H của A’D’. Biết rằng AA’ hợp với đáy một góc 60 0 . Gọi α là số đo của góc giữa hai đường thẳng A C , B ' D . Khi đó cos α bằng
A. 1 5
B. 5 10
C. 1 3
D. 10 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao AH vuông góc với (ABCD). Gọi α là góc giữa BD và (SAD). Tính sin α
A. sin α = 6 4
B. sin α = 1 2
C. sin α = 3 2
D. sin α = 10 4
Cho hình chóp tứ giác đều S.ABCD có AB = a, gọi α là góc giữa mặt bên và mặt đáy của hình chóp S.ABCD. Tính khoảng cách d giữa SA và CD theo a và α
A. d = a.cos α
B. d = a.sin α
C. d = a.sin2 α
D. d = a.cos2 α
Cho hình chóp S . A B C D có đáy ABCD là hình vuông cạnh 2a. Gọi O là giao điểm của AC và BD. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng A B C D là trung điểm H của đoạn OA và S D , A B C D = 60 ∘ . Gọi α là góc giữa hai mặt phẳng S C D v à A B C D . Tính t a n α .
A. t a n α = 4 15 9
B. tan α = 30 12
C. tan α = 10 3
D. tan α = 30 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với đáy. Biết rằng khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a. Xét góc α thảy đổi là số đo của góc giữa đường thẳng SB và mặt phẳng đáy. Tính cos α sao cho thể tích của hình chóp S.ABCD đạt giá trị nhỏ nhất
A. cos α = 3 6
B. cos α = 6 3
C. cos α = 3 3
D. cos α = 6 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là góc tạo bởi đường thẳng BD với (SAD). Tính sin α ?
A. 2 3
B. 1 2
C. 6 4
D. 10 4