Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao AH vuông góc với (ABCD). Gọi α là góc giữa BD và (SAD). Tính sin α
A. sin α = 6 4
B. sin α = 1 2
C. sin α = 3 2
D. sin α = 10 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK)
A. 2 2
B. 2 4
C. 7 4
D. 14 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB, AD. Tính sin của góc tạo bởi giữa đường thẳng SA và (SHK).
A. 2 2
B. 2 4
C. 14 4
D. 7 4
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α , với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng S B C .
A. sin α = 7 8
B. sin α = 3 2
C. sin α = 2 4
D. sin α = 3 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hình chiếu vuông góc của đỉnh S xuống mặt đáy nằm trong hình vuông ABCD. Hai mặt phẳng (SAD), (SBC) vuông góc với nhau; góc giữa hai mặt phẳng S A B v à S A C là 60 ° ; góc giữa hai mặt phẳng S A B v à S A D là 45 ° Gọi α là góc giữa hai mặt phẳng S A B v à A B C D , tính cos α
A. cos α = 1 2
B. cos α = 2 2
C. cos α = 3 2
D. cos α = 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi đường thẳng BD và mặt phẳng (SBC) .
A. sin α = 2 4
B. sin α = 3 5
C. sin α = 3 2
D. sin α = 7 8
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABCD). Biết S D = 2 a 3 và góc tạo bởi đường thẳng SC với mặt phẳng (ABCD) bằng 30 ° . Tính theo a thể tích khối chóp S.ABCD.
A. 4 a 3 6 5
B. 4 a 3 6 3
C. 4 a 3 6 9
D. 4 a 3 6 7
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, A B C ^ = 60 ° mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là số đo gó giữa đường thẳng SB và mặt phẳng (SCD). Khi đó cosα bằng
A. 1 4
B. 6 4
C. 3 2
D. 10 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB cân tại S có SA=SB=2a nằm trong mặt phẳng vuông góc với đáy ABCD. Gọi α là góc giữa SD và mặt phẳng đáy (ABCD). Mệnh đề nào sau đây đúng
A. tan α = 3
B. c o t α = 3 6
C. tan α = 3 3
D. c o t α = 2 3