a) Xét tam giác ABH và tam giác CID có :
AB = CD ( gt )
\(\widehat{AHB}=\widehat{CID}=90^0\)
\(\widehat{BAH}=\widehat{ICD}\)
\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)
\(\Rightarrow\)\(AH=CI\)
c) \(CM\perp AB\Rightarrow CM\perp CD\)
\(CN\perp AD\Rightarrow CN\perp BC\)
Xét tam giác BCM và tam giác CDN có :
\(\widehat{BMC}=\widehat{CND}\)
\(\widehat{MCB}=\widehat{DCN}\)
Suy ra tam giác BCM = tam giác CDN
\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)
mà BC = AD và DC = AB
Suy ra AB.CM = CN.AD