a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có
BA=DC
góc HAB=góc ICD
=>ΔHBA=ΔIDC
=>AH=IC
b: Xét tứ giác BHDI có
BH//DI
BH=DI
=>BHDI là hình bình hành
c; S CAB=AB*CM/2
S DAC=1/2*CN*AD
mà ΔCAB=ΔDAC
nên AB*CM=CN*AD
a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có
BA=DC
góc HAB=góc ICD
=>ΔHBA=ΔIDC
=>AH=IC
b: Xét tứ giác BHDI có
BH//DI
BH=DI
=>BHDI là hình bình hành
c; S CAB=AB*CM/2
S DAC=1/2*CN*AD
mà ΔCAB=ΔDAC
nên AB*CM=CN*AD
Cho hình bình hành ABCD có góc A nhọn. Kẻ BH,CM,CN,DI lần lượt vuông góc với AC,AB,AD và AC, AH=CI, DIBH là hình bình hành, AD.CN=AB.CMChứng minh: AD.AN+AB.AM=AC^2
cho hình bình hành ABCD có ∠A nhọn, BH⊥AC, CM⊥AB, CN⊥AD, DI ⊥ AC, AH=CI, BIDH là hình bình hành
a) AB.CM=CN.AD
b) AD.AN+AB.AM=AC^2
c) AB/CN = AD/CM
cho hình bình hành abcd có góc a<90 độ. từ c kẻ các đường cm, cn lần lượt vuông góc với đường thẳng ab và ad. gọi h là hình chiếu của b lên ac. Chứng minh:
a) tam giác BHC đồng dạng tam giác CNA
b) AB.CM = AD.CN
c) AD.AN+AB.AM= AC bình phương
Cho hình bình hành ABCD có góc nhọn A.Kẻ BH,CM,CN,DI lần lượt vuông góc với AC,AB,AD và AC.
a)Chứng minh AH=CI.
b)Chứng minh:tam giác ABH đồng dạng với tam giác ACM.
c)Chứng minh:AB.CM=CN.AD.
d)Chứng minh:AD.AN+AB.AM=\(AC^2\)
Cho hình bình hành ABCD, góc B nhọn. Tứ C kẻ CM vuông góc với AB tại M, kẻ CN vuông góc với AD tại N. a) Chứng minh: ABMC O ADNC. b) Từ Bkẻ BH vuông góc với AD tại H. kẻ BK vuông góc với DC tại K. Chứng minh: DA.DH-DCDK DE
Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD tại H.
a) Chứng minh tam giác ADH đồng dạng với tam giác BAH, suy ra AH2=DH.BH
b) Tính AD, AB biết DH = 9 cm, BH = 16 cm.
c) Gọi K,M,N lần lượt là trung điểm của AH, BH, CD. Chứng minh tứ giác MNDK là hình bình hành và góc AMN = 90°
Cho hình thang vuông ABCD với góc A bằng góc B bằng 90 độ AD=2BC
a) Kẻ CK vuông góc với AD tại K Tứ giác ABCK là hình gì? Tại sao?
b) Gọi AH là đường cao của tam giác ABD. E và F lần lượt là trung điểm của AH và DH chứng minh rằng tứ giác BCFE là hình bình hành
c) Chứng minh BE vuông góc với AF
Cho hình thang vuông ABCD với góc A bằng góc B bằng 90 độ AD=2BC
a) Kẻ CK vuông góc với AD tại K Tứ giác ABCK là hình gì? Tại sao?
b) Gọi AH là đường cao của tam giác ABC. E và F lần lượt là trung điểm của AH và DH chứng minh rằng tứ giác BCFE là hình bình hành
c) Chứng minh BE vuông góc với AF
Cho hình chữ nhật AB =2AD .Vẽ BH vuông góc với AC .Gọi M ,N ,P lần lượt là trung điểm của AH ,BH ,CD . a) tính diện tích của hình chữ nhật ABCD biết AB =8. Chứng minh tứ giác MNCP là hình bình hành. b) Chứng minh MP vuông góc MB