Cho \(\widehat{xAy}\) và đường tròn (O) tiếp xúc với Ax tại B và cạnh Ay tại C. M là một điểm trên cung nhỏ BC của đường tròn tiếp tuyến với đường tròn (O) tại M cắt AB tại D, cắt AC tại E. C/m:
a \(\widehat{MBC}=\widehat{DOA}\)
b. Chu vi ADE không thay đổi khi M chạy trên cung nhỏ BC.
Mọi người giúp mình với !!!
Cho tâm giác ABCD nội tiếp đường tròn (O), I là trung điểm của BC, M là điểm trên đoạn CI (M≠C,I). Đường thẳng AM cắt đường tròn (O) tại D. Tiếp tuyến của đường tròn ngoại tiếp tâm giác AMI tại M cắt các đoạn thẳng BD, DC lần lượt tại P và Q. Chứng minh M là trung điểm PQ.
Giúp mình nhé!!!
cho một đường tròn tâm (O;R) , đường kính AB. qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của nửa đường tròn. gọi M,N lần lượt là hình chiếu của A và B trên d. gọi H là đường vuông góc kẻ từ C đến AB.chứng minh rằng:
a) tứ giác ABNM là hình thang vuông.
b) AC là phân giác của BAM.
c) CH^2 = AM.BN
Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: Tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và gócADO = gócCAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.
Cho đường trong tâm O đường kính AB= 2R cố định và một đường kính MN của đường tròn thay đổi ( MN khác AB) qua A kẻ đường thẳng d là tiếp tuyến của đường tròn . d cắt BM và BN lần lượt là C và D
a) Tứ giác AMBN là hình j ? vì sao
B ) Chứng Minh BM . BC = BN . BD
c) Tìm vị trí của Đường kính MN để CD có độ dài nhỏ nhất và tính Giá trị nhỏ nhất đó theo R
Cho nửa đường tròn tâm O có đường kính AB=2R. Kẻ 2 tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B. Qua điểm M thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax, By theo thứ tự tại C và D.
a, Chứng minh tam giác COD vuông tại O
b, Chứng minh tích AC.BD không đổi khi M di chuyển trên nửa đường tròn
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.
Cho đường tròn (O,R). Từ điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB , AC với (O) ( B, C là 2 tiếp điểm )
a, Gọi D là giao điểm của đoạn thẳng OA với (O) . Kẻ dây BE của (O) song song với OD, kẻ bán kính OF vuông góc với CD . Chứng minh C,O,E thẳng hàng và EF là tia phân giác góc CED
b, Vẽ đường tròn (A, AD). Gọi I,J lần lượt là giao điểm của đường thẳng ED và FD với đường tròn (A) ( I,J khác D). Chứng minh góc CEF = góc JID
c, Tính độ dài đoạn thẳng OA theo R để tứ giác EFIJ là hình bình hành
Cho nửa đường tròn tâm O đường kính BC = 2R và 1 điểm A trên nửa đường tròn đó.Vẽ AH vuông góc với BC. Gọi I và K lần lượt là các điểm đối xứng của H qua AB và qua AC.Chứng minh rằng
a) Ba điểm I,A,K thẳng hàng
b) IK là tiếp tuyến của đường tròn tâm O