Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: Tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và gócADO = gócCAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.
Bài 1. Cho nửa đường tròn tâm O, đường kính AB, tiếp tuyến Ax. Gọi C là 1 điểm trên nửa đường tròn. Tia phân giác của góc CAx cắt nửa đường tròn tại E. AE và BC cắt nhau tại K.
a, ΔABC là hình j? Vì sao?
b, Gọi I là giao điểm của AC và BE. Cm KI // Ax.
c, Cm OE //BC.
Bài 2. Cho nửa đường tròn tâm O, đường kính AB. Trên tia đối của tia AB lấy M, vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB.
a, Cm tia CA là phân giác của góc MCH.
b, Giả sử Ma=a, MC=2a. Tính AB và CH theo a.
Giúp mk vs nak !
cho một đường tròn tâm (O;R) , đường kính AB. qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của nửa đường tròn. gọi M,N lần lượt là hình chiếu của A và B trên d. gọi H là đường vuông góc kẻ từ C đến AB.chứng minh rằng:
a) tứ giác ABNM là hình thang vuông.
b) AC là phân giác của BAM.
c) CH^2 = AM.BN
Cho nửa đường tròn tâm (O) đường kính BC, A là một điểm thuộc nửa dduwwowngf tròn (A khác B,C). Từ A kẻ tiếp tuyến d với đường tròn tâm (O). Kẻ BH,CK cùng vuông góc với d (H,K thuộc d)
a)CM: đường tròn đường kính HK tiếp xúc BC
b) Xác định vị trí của điểm A trên nửa đường tròn để diện tích tứ giác BHKC có diện tích lớn nhất. Tính diện tích lớn nhất đó theo BC
c) Gọi M là tiếp điểm của BC với đường tròn đường kính HK.CM: khi M nằm giữa B và O thì \(\widehat{MAO}=\frac{\cot\widehat{ACB}-\cot\widehat{ABC}}{2}\)
Cho nửa đường tròn (O;R) đường kính AB. Trên đoạn Ao lấy điểm C, vẽ tia Cx vuông góc với AB, tia Cx cắt nửa đường tròn (O) tại D, Trên cung BD lấy điểm M. kẻ tia BM cắt Cx tại E. Giao điểm của AM và Cx là H , tia BH cắt nửa đường tròn (O) ở N. Gọi I là trung điểm của EH
a. CMR: H là trực tâm của tam giác ABEb. CMR: NI là tiếp tuyến của nửa đường tròn (O)c.CMR: khi M chuyển động trên cung BD thì đường thẳng MN luôn đi qua 1 điểm cố địnhcho đường tròn tâm O đường kính AB=2R. từ trung điểm H của đoạn OB kẻ đường thẳng vuông góc với AB cắt đt (O) tại C và D
a) cm HC = HD và tứ giác ODBC là hình thoi,
b) tính số đo góc BOC
c) Gọi M là điểm đối xứng của O qua B. chứng minh MC là tiếp tuyến của đt (O). tính MC theo R.
d) Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. cm HI.HD + HB.HM = R2
Cho nửa đường tròn tâm O có đường kính AB=2R. Kẻ 2 tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B. Qua điểm M thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax, By theo thứ tự tại C và D.
a, Chứng minh tam giác COD vuông tại O
b, Chứng minh tích AC.BD không đổi khi M di chuyển trên nửa đường tròn
Cho ( O,R ), lấy điểm A cách O khoảng bằng 2R . kẻ các tiếp tuyến AB và AC với đường tròn (B,C là các tiếp điểm ) . Đoạn thẳng OA cắt đường tròn tâm (O) tại I. Đường thẳng O và vuông góc với OH cắt AC tại K. .
a) CM tam giác OKA cân tại A.
b) đường thẳng AKI cắt AH tại M. CM KM là tiếp tuyến của đường tròn (O)