bình phương 2 vế của 1/a + 1/b +1/c =2 ta đk:
1/a^2 +1/b^2 + 1/c^2 + 2 x (a+b+c) / abc =4
1/a^2 + 1/b^2 + 1/c^2 +2 =4
=> 1/a^2 + 1/b^2 + 1/c^2 =2
bình phương 2 vế của 1/a + 1/b +1/c =2 ta đk:
1/a^2 +1/b^2 + 1/c^2 + 2 x (a+b+c) / abc =4
1/a^2 + 1/b^2 + 1/c^2 +2 =4
=> 1/a^2 + 1/b^2 + 1/c^2 =2
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a+b+c=abc. Chứng minh rằng: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
cho a,b,c>0 và a+b+c=1. tìm GTNN của : \(M=\frac{1}{1-2\left(ab+bc+ca\right)}+\frac{1}{abc}\)
cho abc=1 , chứng minh :
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
cho a;b;c là các số lớn hơn 1.chứng minh \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
cho a,b ,c thoa man a+b+c=3
cm \(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}>=\frac{3}{2}\)
cam on nhieu
giai cach lop 9 nha
Cho a,b,c, >0 và a+b+c=1
CMR: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge1\)
1,Tam giác ABC có AB>AC.Từ trung điểm M của BC vẽ một đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H, cắt AB,AC lần lượt tại E và F.Chứng minh rằng:
a, BE=CF
b, AE=\(\frac{AB+AC}{2}\) ; BE=\(\frac{AB-AC}{2}\)
c, BME=\(\frac{ACB-B}{2}\)
(BME,ACB,B đều là các góc)
2,Tính B=\(\frac{1}{2010.2009}\)-\(\frac{1}{2009.2008}\)-\(\frac{1}{2008.2007}\)-...-\(\frac{1}{3.2}\)-\(\frac{1}{2.1}\)
3,Cho 2 số nguyên a và b không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư.Chứng minh rằng ab-1 là bội của 3
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)