Xét (O) có \(\widehat{AOB}\) là góc ở tâm chắn cung nhỏ AB
=>\(sđ\stackrel\frown{AB}_{nhỏ}=100^0\)
=>Số đo cung lớn AB là 360-100=260 độ
Xét (O) có \(\widehat{AOB}\) là góc ở tâm chắn cung nhỏ AB
=>\(sđ\stackrel\frown{AB}_{nhỏ}=100^0\)
=>Số đo cung lớn AB là 360-100=260 độ
Cho tam giác đều ABC. Gọi O là tâm của đường tròn đi qua đỉnh A, B, C.
Tính số đo các góc ở tâm tạo bởi hai trong ba bán kính OA, OB, OC.
Cho tam giác cân AOB có góc AOB bằng 110 độ.Vẽ đường tròn tâm O , bán kính OA. Gọi C là một điểm trên đường tròn O , biết số đo cung AC=40 độ.Tính số đo cung nhỏ BC và cung lớn BC.
Cho đường tròn tâm O, bán kính R=3 cm và hai điểm A,B nằm trên đường tròn (O) sao cho số đo cung lớn bằng 240°. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OB vsf cung nhỏ AB.
Cho tam giác cân AOB có góc AOB bằng 110 độ.Vẽ đường tròn tâm O , bán kính OA. Gọi C là một điểm trên đường tròn O , biết số đo cung AC=40 độ.Tính số đo cung nhỏ BC và cung lớn BC.
Cho em xin lời giải cụ thể với ạ,em cảm ơnHai tiếp tuyến của đường tròn (O) tại A và B cắt nhau tại M. Biết góc A M B = 35 o .
Tính số đo của góc ở tâm tạo bởi bán kính OA, OB.
Bài 1: Cho đường tròn (O, R) và điểm M nằm ngoài đường tròn đó. Gọi MA, MB là hai tiếp tuyến với đường tròn tại A và B. Tính số đo của góc ở tâm tạo bởi hai bán kính OA và OB nếu:
a) ∠AMB = 70o
b) MA = R
c) MO = 2R
cho đường tròn (O,R ) qua điểm A thuộc đường tròn , kẻ tiếp tuyến Ax trên đó lấy điểm B sao cho OB=căn hai R , OB cắt đường tròn (o) ở C a, tính sao đo góc ở tâm tạo bởi 2 bán kính OA, OC b, tính số đo các cung AC cửa đường tròn (O)
Cho đường tròn (O), bán kính OM. Vẽ đường tròn tâm O', đường kính OM. Một bán kính OA của đường tròn (O) cắt đường tròn (O') ở B.
Chứng minh cung Ma và cung MB có độ dài bằng nhau
Cho đường tròn tâm O bán kính R có đường kính AB, dây cung BC=R.
a) Tính AC theo R và số đo góc B của tam giác ABC.
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn tâm O ở D.
Chứng minh DC là đường tiếp tuyến của đường tròn tâm O.
c) Đường thẳng OD cắt đường tròn tâm O tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ADC.