Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,
MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại N
a) Cho OM = 2R. Tính AON và số đo A NB
b) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.
Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)
cắt AB, AC tương ứng tại M và N.
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính MON , nếu BAC =40o
Bài 9: Trên cung nhỏ AB của đường tròn (O), cho hai điểm C, D sao cho cung AB được
chia thành ba cung bằng nhau, tức là AC =CD =DB . Bán kính OC và OD cắt dây AB lần
lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE, EF và FB
b) Chứng minh rằng AB // CD
Cả hình giúp mình nhé! mơn trc nà
cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn . Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm ) . Tia Mx nằm giữa MA và MO cắt đường tròn (O;R) tại hai điểm C và D ( C nằm giữa M và D ) . Gọi I là trung điểm của dây CD , kẻ AH vuông góc với MO tại H
a) Tính OH , OM theo R
b) Chứng minh : bốn điểm M ,A ,I ,O cùng thuộc một đường tròn
c) Gọi K là giao điểm của OI với HA . Chứng minh KC là tiếp tuyến đường tròn (O:R)
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA và MB và cát tuyến MCD với đường tròn (O). gọi H là giao điểm của OM và AB
a) CM Tứ giác AOBM nội tiếp
b CM: MH.MO=MC.MD
c) tiếp tuyến tại C của đường tròn (O) cắt MA ,MB theo thứ tự tại E và F Đường vuông góc với MO tại O cắt 2 tiếp tuyến MA ,MB tai P và Q .CM góc POE =góc OFQ
d) CM PE+QF>= PQ
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD. Chứng minh HI song song với AD.
Cho đường tròn tâm O, bán kính R. M là một điểm nằm ngoài đường tròn . Từ M kẻ hai tiếp tuyến MA và MB đến đường tròn(A,B là hai tiếp điểm ). Gọi E là giao điểm của AB và OM.
1.CM: Tứ giác MAOB là tứ giác nội tiếp
2.Tính diện tích tam giác AMB , biết OM=5; R=3
3.Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). CM: EA là tia phân giác của góc CED.
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn.
Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt
đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây
CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Hai tiếp tuyến của đường tròn (O) tại A và B cắt nhau tại M. Biết góc A M B = 35 o .
Tính số đo của góc ở tâm tạo bởi bán kính OA, OB.
) Cho (O;R) và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA; MB với đường tròn (A,B là tiếp điểm). MO cắt AB tại H. Vẽ đường kính AC của đường tròn, MC cắt đường tròn tại điểm thứ hai là N.
a) Chứng minh MO vuông góc với AB
b) Gọi I là trung điểm của NC, OI cắt AB tại K. Chứng minh OI.OK = R2 và KC là tiếp tuyến của (O)