\(a,\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ b,\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ b,\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Cho các số hữu tỉ \(\dfrac{a}{b}\)và\(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\). Chứng minh rằng:
A) ad<bc
B) \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)< \(\dfrac{c}{d}\)
Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:\(\dfrac{a+b}{b}\)=\(\dfrac{c+d}{d}\);\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) và\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\).
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)chứng minh rằng : \(\dfrac{a^3}{b^3}=\dfrac{a}{d}\)
cho \(\dfrac{a^2+b^2}{c^2+d^2}\)= \(\dfrac{ab}{cd}\).Chứng minh rằng: hoặc \(\dfrac{a}{b}\)= \(\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}\)= \(\dfrac{d}{c}\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)