\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Bài 7: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức phải chứng minh đều có nghĩa):
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\) b)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\) d)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
ai hộ mik vs
Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:\(\dfrac{a+b}{b}\)=\(\dfrac{c+d}{d}\);\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) và\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\).
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\), (Các tỉ số đã viết đều có nghĩa). Chứng minh các tỉ lệ thức sau:
a) \(\dfrac{a}{b}=\dfrac{a+b}{c+d}\)
b)\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a.d}{c.d}=\dfrac{a^2-b^2}{b^2-d^2}\)và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) với \(a,b,c,d\ne0\). Chứng minh \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng: \(\text{}\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\) (giả thiết các tỉ số đều có nghĩa)
Giải giúp mình với
Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)chứng minh các tỉ lệ thức\(\dfrac{3a-7b}{3a+7b}\)=\(\dfrac{3c-7d}{3c+7d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng minh đẳng thức sau : \(\dfrac{2a+3b}{3a-5b}\) = \(\dfrac{2c+3d}{3c-5d}\)
cho tỷ lệ thức \(\dfrac{a}{b}\)= \(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh \(\dfrac{\left(a+b+c\right)}{\left(b+c+e\right)}^3\)=\(\dfrac{a}{d}\)